“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)


已知角\(\alpha \)终边上有一点\(P\left ( {-\sqrt {3},m} \right )\),且\(\sin {\alpha }=\frac {\sqrt {2}} {4}m\left ( {m≠0} \right )\)



\(m\)的值,并求\(\tan \alpha \)的值;




知识点:第五章 三角函数


参考答案:\(\because \) 角\(\alpha \)终边上有一点,

又\(\sin \alpha = \frac{{\sqrt 2 }}{4}m = \frac{m}{{\sqrt {3 + {m^2}} }}\),所以\(m = \pm \sqrt 5 \).

当\(m = \sqrt 5 \)时,\(\cos \alpha = \frac{{ - \sqrt 3 }}{{\sqrt {3 + {m^2}} }} = - \frac{{\sqrt 6 }}{4}\),\(\tan \alpha = \frac{m}{{ - \sqrt 3 }} = - \frac{{\sqrt {15} }}{3}\);

当\(m = - \sqrt 5 \)时,\(\cos \alpha = \frac{{ - \sqrt 3 }}{{\sqrt {3 + {m^2}} }} = - \frac{{\sqrt 6 }}{4}\),\(\tan \alpha = \frac{m}{{ - \sqrt 3 }} = \frac{{\sqrt {15} }}{3}\).


解析:



进入考试题库