“微信扫一扫”进入考试题库练习及模拟考试

初中数学八年级下册(648题)


第321题

如图,在矩形\( ABCD\)中,\( AC\mathrm{、}BD\)交于点\( O\),若\(AB=5\),\(AC=13\),求\( △BOC\)的周长。 


    



参考答案:∵矩形\( ABCD\),\(AC=13\)

\(\therefore \mathrm{\angle }ABC=90°\),
\(AC=BD\),\( AC\)与\( BD\)互相平分

\(\therefore OB=OC=\frac {1} {2}AC=6.5\)

\( \because \)在\( \mathrm{R}\mathrm{t}△ABC\)中,
\(AB=5\),\(AC=13\),\(\mathrm{\angle }ABC=90°\)

∴\(A{B^2} + B{C^2} = A{C^2}\)

\(\therefore BC=\sqrt {{{13}^{2}}-{{5}^{2}}}=12\)

\( \therefore △BOC\)周长为:\( BC+OB+OC=25\)



第323题



参考答案:


证明:四边形\(ABCD\)是矩形,



    



\(∴∠B=90°\),且\(AD//BC\)\(AD = BC\).  



\(∴∠1=∠2\)



\(DF \bot AE\),  



\(\therefore \angle AFD=90°\). 



\(\therefore \angle B=\angle AFD\)



\(AE = BC\)\(AD = BC\)



\(AD = AE\)



\(ABE\)≌△\(DFA\)(AAS).



\(AF = BE\)



\(CE = EF\)




第325题

如图,矩形\( ABCD\)中,对角线\( AC\mathrm{、}BD\)交于点\( O\),\( \mathrm{\angle }BAD\)的平分线交\( BC\)边于点\( E\),且\(\mathrm{\angle }EAC=15°\)。先猜想线段\( BO\)与\( BE\)的大小关系,再证明你的结论。


    



参考答案:\( BO=BE\)

证明:∵矩形\( ABCD\)

\(\therefore \mathrm{\angle }BAD\)
\(=\mathrm{\angle }ABC=90°\),
\( AC\)与\( BD\)互相平分且\(AC=BD\)

\(\therefore OA=OB\)

\( \because AE\)平分\( \mathrm{\angle }BAD\)

\(\therefore \mathrm{\angle }BAE=45°\)

\(\because \mathrm{\angle }EAC=15°\)

\(\therefore \mathrm{\angle }BAO=60°\)

\( \therefore △ABO\)是等边三角形

\(\therefore BO=AB\)

\(\because \mathrm{\angle }BAE=45°\),
\(\mathrm{\angle }ABE=90°\)

\(\therefore \mathrm{\angle }AEB=45°\)
\(=\mathrm{\angle }BAE\)

\(\therefore BE=AB\)

\(\therefore BO=BE\)


第326题



参考答案:证明:
\( \because \mathrm{ }△BCD\)沿对角线\( BD\)折叠得到\( △BFD\),
\( \therefore \mathrm{\angle }DBC\)
\(=\mathrm{\angle }DBE\mathrm{ }\)
∵ 矩形\( ABCD\)中,\( AD//BC\)
\( \therefore \mathrm{ }\mathrm{\angle }DBC\)
\(=\mathrm{\angle }ADB\)
\( \therefore \mathrm{ }\mathrm{\angle }ADB\)
\(=\mathrm{\angle }DBE\)
\( \therefore \mathrm{ }BF=DF\)


第327题



参考答案:解:由(1)设\(BF=x=DF\),

∵矩形\( ABCD\),\(BC=8\)

\(\therefore \mathrm{\angle }BAD=90°\),\(AD=BC=8\)

\(\therefore AF=8-x\),

∵在\( \mathrm{R}\mathrm{t}△ABF\)中,\(AB=4\),\(\mathrm{\angle }BAF=90°\)

∴\(A{B^2} + A{F^2} = B{F^2}\)

∴\({4^2} + {\left( {8 - x} \right)^2} = {x^2}\)

解得:\(x=5\)

\(\therefore \mathrm{}BF=5\)


第328题



参考答案:


证明:连接\(BM\)\( ,DM\)





\(\because \angle ABC = \angle ADC = 90^\circ \)\(M\)\(AC\)的中点,



\(\therefore BM = \frac{1}{2}AC\)\(DM = \frac{1}{2}AC\)



\(\therefore BM = DM\)



\(N\)\(BD\)的中点,



\( \therefore \mathrm{ }MN\)为底边上中线,



\( \therefore \mathrm{ }MN\perp BD\)



第329题 如图,在矩形\(ABCD\)中,已知\(AD = 12\),\(AB = 5\),\(P\)是\(AD\)边上任意一点,\(PE \bot BD\),\(PF \bot AC\),\(E\)、\(F\)分别是垂足,求\(PE + PF\)的长。

     



参考答案:

连结\(PO\)



    



由矩形\(ABCD\)\(AD = 12\)\(AB = 5\)



\(\therefore AC=BD=2OA=2OB=13\)



\(\therefore OA=OD=6.5\)



\({{S}_{矩形ABCD}}=12×5=60\)



\({\therefore {S}_{\Delta AOD}}=\frac {1} {4}×60=15\)



\(\therefore {{S}_{\Delta AOP}}+{{S}_{\Delta DOP}}=15\) 



\(\frac {1} {2}\times OA\times PF+\frac {1} {2}\times OD\times PE=15\)



\(\therefore \frac {1} {2}×6.5×\left ( {PE+PF} \right )=15\)



\(\therefore PE+PF=\frac {60} {13}\)







第335题



参考答案:证明:\(\because AF//BC\)

\(\therefore \angle AFE = \angle DBE\)

\(\because E\)是线段\(AD\)的中点

\(\therefore AE = DE\)

\(\because \angle AEF = \angle DEB\)

\(\therefore \Delta BDE\cong \Delta FAE(\text{AAS})\)

\(\therefore AF = BD\)

\(\because D\)是线段\(BC\)的中点

\(\therefore BD = CD\)

\(\therefore AF = CD\)

\(\because AF//CD\)

\(\therefore \)四边形\(ADCF\)是平行四边形

\(\because AB = AC\)

\(\therefore AD \bot BC\)

\(\therefore \angle ADC = 90^\circ \)

\(\therefore \)平行四边形\(ADCF\)为矩形


第336题

在\( \mathrm{R}\mathrm{t}△ABC\)中,\(\mathrm{\angle }C=90°\),\(D\),\(E\),\(F\)分别是\( AC,AB,BC\)的中点,连接\(ED\),\(EF\)。求证四边形\( DEFC\)是矩形。




参考答案:证明:
\(\because D\),\(E\),\(F\)分别是\(AC\),\(AB\),\(BC\)的中点
\(\therefore DE\)、\(EF\)分别是\(\Delta ABC\)的中位线
\(\therefore DE//BC\),\(EF//AC\)
\(\therefore \)四边形\(DEFC\)是平行四边形
\(\because \angle C = 90^\circ \)
\(\therefore \)平行四边形\(DEFC\)是矩形


第337题

如图,平行四边形\( ABCD\)中,\(∠1=∠2\),求证:四边形\( ABCD\)是矩形。




参考答案:证明:\(∵∠1=∠2\)

\( \therefore OA=OB\)

∵四边形\( ABCD\)是平行四边形

\(\therefore AC=2OA,BD=2OB\)

\(\therefore AC=BD\)

∴平行四边形\( ABCD\)是矩形


第338题

如图,\(\Delta ABC\)中,\(AB = AC\),\(AD\)平分\(\angle BAC\),射线\(AN\)平分外角\(\angle CAM\),过点\(C\)作\(CE \bot AN\)于点\(E\),求证:四边形\(ADCE\)是矩形。


图片 9    



参考答案:证明:
\(\because AB = AC\),
\(AD\)平分\(\angle BAC\),
\(\therefore AD \bot BC\),
\(\angle CAD = \frac{1}{2}\angle BAC\),
\(\therefore \angle ADC = 90^\circ \)。
\(\because AN\)是\(\Delta ABC\)外角的平分线,
\(\therefore \angle CAE \)
\(= \frac{1}{2}\angle CAM\)。
\(\because \angle BAC + \angle CAM \)
\(= 180^\circ \),
\(\therefore \angle DAN \)
\(= \angle CAD + \angle CAE\)
\( = \frac{1}{2}(\angle BAC + \angle CAM) \)
\(= 90^\circ \)。
\(\because CE \bot AN\),
\(\therefore \angle CEA = 90^\circ \),
\(\therefore \)四边形\(ADCE\)为矩形。


第339题



参考答案:证明:
\(\because CF = BE\),
\(\therefore CF + EC = BE + EC\).即\(EF = BC\),
\(\because \)四边形\(ABCD\)是平行四边形,
\(\therefore AD//BC\),\(AD = BC\),
\(\therefore AD//EF\),\(AD = EF\),
\(\therefore \)四边形\(AEFD\)是平行四边形。
\(\because AE \bot BC\),
\(\therefore \angle AEF = 90^\circ \).
\(\therefore \)平行四边形\(AEFD\)是矩形。


第340题

如图,在\(▱ABCD\)中,过点\(A\)作\(AE \bot DC\)交\(DC\)的延长线于点\(E\)过点\(D\)作\(DF \bot BA\),交\(BA\)的延长线于点\(F\),求证:四边形\(AEDF\)是矩形。


学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!    



参考答案:证明:\(\because \)四边形\(ABCD\)是平行四边形,

\(\therefore AB//DC\),\(AF//ED\),

\(\because AE \bot DC\),

\(∴AE⊥BA\),

∵\(DF \bot BA\),

\(\therefore DF//EA\),

\(\therefore \)四边形\(AEDF\)是平行四边形,

\(\because AE \bot DE\),

\(\therefore \angle E = 90^\circ \),

\(\therefore \)四边形\(AEDF\)是矩形。


进入题库练习及模拟考试