初中数学八年级下册(648题)
如图,在矩形\(ABCD\)中,已知\(AD = 12\),\(AB = 5\),\(P\)是\(AD\)边上任意一点,\(PE \bot BD\),\(PF \bot AC\),\(E\)、\(F\)分别是垂足,求\(PE + PF\)的长。
知识点:第十八章 平行四边形
参考答案:
连结\(PO\).
∵由矩形\(ABCD\),\(AD = 12\),\(AB = 5\)
\(\therefore AC=BD=2OA=2OB=13\)
\(\therefore OA=OD=6.5\)
而\({{S}_{矩形ABCD}}=12×5=60\)
\({\therefore {S}_{\Delta AOD}}=\frac {1} {4}×60=15\)
\(\therefore {{S}_{\Delta AOP}}+{{S}_{\Delta DOP}}=15\)
即\(\frac {1} {2}\times OA\times PF+\frac {1} {2}\times OD\times PE=15\)
\(\therefore \frac {1} {2}×6.5×\left ( {PE+PF} \right )=15\)
\(\therefore PE+PF=\frac {60} {13}\)