“微信扫一扫”进入题库练习及模拟考试
如图,矩形\( ABCD\)中,对角线\( AC\mathrm{、}BD\)交于点\( O\),\( \mathrm{\angle }BAD\)的平分线交\( BC\)边于点\( E\),且\(\mathrm{\angle }EAC=15°\)。先猜想线段\( BO\)与\( BE\)的大小关系,再证明你的结论。
参考答案:\( BO=BE\)
证明:∵矩形\( ABCD\)
\(\therefore \mathrm{\angle }BAD\)
\(=\mathrm{\angle }ABC=90°\),
\( AC\)与\( BD\)互相平分且\(AC=BD\)
\(\therefore OA=OB\)
\( \because AE\)平分\( \mathrm{\angle }BAD\)
\(\therefore \mathrm{\angle }BAE=45°\)
\(\because \mathrm{\angle }EAC=15°\)
\(\therefore \mathrm{\angle }BAO=60°\)
\( \therefore △ABO\)是等边三角形
\(\therefore BO=AB\)
\(\because \mathrm{\angle }BAE=45°\),
\(\mathrm{\angle }ABE=90°\)
\(\therefore \mathrm{\angle }AEB=45°\)
\(=\mathrm{\angle }BAE\)
\(\therefore BE=AB\)
\(\therefore BO=BE\)