“微信扫一扫”进入题库练习及模拟考试
如图,在矩形\( ABCD\)中,\( AC\mathrm{、}BD\)交于点\( O\),若\(AB=5\),\(AC=13\),求\( △BOC\)的周长。
参考答案:∵矩形\( ABCD\),\(AC=13\)
\(\therefore \mathrm{\angle }ABC=90°\),
\(AC=BD\),\( AC\)与\( BD\)互相平分
\(\therefore OB=OC=\frac {1} {2}AC=6.5\)
\( \because \)在\( \mathrm{R}\mathrm{t}△ABC\)中,
\(AB=5\),\(AC=13\),\(\mathrm{\angle }ABC=90°\)
∴\(A{B^2} + B{C^2} = A{C^2}\)
\(\therefore BC=\sqrt {{{13}^{2}}-{{5}^{2}}}=12\)
\( \therefore △BOC\)周长为:\( BC+OB+OC=25\)