“微信扫一扫”进入考试题库练习及模拟考试
第341题
如图,已知平行四边形
参考答案:证明:
\(\because \)四边形\(ABCD\)是平行四边形,
\(\therefore OA = OC\),\(OB = OD\),
\(\because BM = DN\),
\(\therefore OB - BM = OD - DN\),即\(OM = ON\),
\(\therefore \)四边形\(AMCN\)是平行四边形,
\(\because MO = NO\),
\(\therefore MN = 2MO\),
\(\because AC = 2MO\),
\(\therefore MN = AC\),
\(\therefore \)四边形\(AMCN\)是矩形。
第342题 菱形的一个内角是\(60^\circ \),周长是\(12\text{cm}\),则这个菱形的较短的对角线长是( )
A.\(\frac {3} {2}\text{cm}\)
B.\(\frac {3} {2}\sqrt {3}\text{cm}\)
C.\(3\text{cm}\)
D.\(3\sqrt {3}\text{cm}\)
参考答案:C
第344题
如图,在菱形
A.36
B.24
C.12
D.6
参考答案:B
第346题
如图,四边形\(ABCD\)是菱形,\(AC=8\text{cm}\),\(DB=6\text{cm}\),\(DH \bot AB\)于\(H\),则\(DH\)等于( )。
A.3.6
B.4.8
C.5
D.10
参考答案:B
第350题
如图,菱形
参考答案:12
参考答案:8
参考答案:证明:\(\because \)四边形\(ABCD\)是菱形,\(\therefore AB = AD = BC = CD\),\(\angle B = \angle D\),在\(\Delta ABE\)和\(\Delta ADF\)中,\(\left\{ {\begin{array}{*{20}{l}}
{\angle BAE = \angle DAF} \\
{AB = AD} \\
{\angle B = \angle D}
\end{array}} \right.\),\(\therefore \Delta ABE \cong \Delta ADF(ASA)\),\(\therefore BE = DF\),\(\therefore BC - BE = CD - DF\),即\(CE = CF\)。
第353题
如图,菱形\(ABCD\)中,对角线\(AC,BD\)相交于点\(O,E\)为\(AB\)的中点.若菱形\(ABCD\)的周长为48,则\(OE\)的长为( )
A.4
B.5
C.6
D.8
参考答案:C
第354题
如图,已知菱形
参考答案:解:
\(\because \)四边形\(ABCD\)是菱形,\(BD = 10\),\(AC = 24\),
\(\therefore AB = BC = CD = AD\),\(OA = \frac{1}{2}AC = 12\),\(OB = \frac{1}{2}BD = 5\),\(AC \bot BD\),
\(\therefore \angle AOB = 90^\circ \),
\(\therefore AB = \sqrt {O{A^2} + O{B^2}} = \sqrt {{{12}^2} + {5^2}} = 13\),
\(\therefore \)菱形的周长\( = 4AB = 52\).
参考答案:解:
\(\because \)四边形\(ABCD\)是菱形,\(\angle ABC = 60^\circ \),
\(\therefore \angle ADC = 60^\circ \),\(\angle BCD = 120^\circ \),\(AC \bot BD\),\(AO = CO\),\(\angle ADB = \angle CDB = 30^\circ \),\(\angle ACD = \angle ACB = 60^\circ \),
\(\therefore DO = \sqrt 3 CO = \sqrt 3 AO\),\(AD = 2AO\),
\(\because \angle BCE = 15^\circ \),
\(\therefore \angle ACE = 45^\circ \),
\(\therefore \angle ACE = \angle DEC = 45^\circ \),
\(\therefore EO = CO = AO\),
\(\because ED = 4 + 4\sqrt 3 \),
\(\therefore AO + \sqrt 3 AO = 4 + 4\sqrt 3 \),
\(\therefore AO = 4\),
\(\therefore AD = 8\)。
第359题
在四边形
A.\(\angle A = \angle C\)
B.\(AB \bot BC\)
C.\(AC \bot BD\)
D.\(AC = BD\)
参考答案:C
参考答案:证明:
\(\because DE//AC\),\(DF//AB\),
\(\therefore \)四边形\(AEDF\)是平行四边形,
\(\because AD\)平分\(\angle BAC\),
\(\therefore \angle BAD = \angle CAD\),
\(\because DF//AB\),
\(\therefore \angle ADF = \angle BAD\),
\(\therefore \angle CAD = \angle ADF\),
\(\therefore AF = DF\),
\(\therefore \)四边形\(AEDF\)是菱形。