“微信扫一扫”进入考试题库练习及模拟考试

初中数学八年级下册(648题)


第341题



参考答案:证明:
\(\because \)四边形\(ABCD\)是平行四边形,
\(\therefore OA = OC\),\(OB = OD\),
\(\because BM = DN\),
\(\therefore OB - BM = OD - DN\),即\(OM = ON\),
\(\therefore \)四边形\(AMCN\)是平行四边形,
\(\because MO = NO\),
\(\therefore MN = 2MO\),
\(\because AC = 2MO\),
\(\therefore MN = AC\),
\(\therefore \)四边形\(AMCN\)是矩形。


第342题 菱形的一个内角是\(60^\circ \),周长是\(12\text{cm}\),则这个菱形的较短的对角线长是(    )


A.\(\frac {3} {2}\text{cm}\)

B.\(\frac {3} {2}\sqrt {3}\text{cm}\)

C.\(3\text{cm}\)

D.\(3\sqrt {3}\text{cm}\)


参考答案:C


第343题


A.对角线互相平分

B.邻角互补

C.对角相等

D.每条对角线平分一组对角


参考答案:D










第352题



参考答案:证明:\(\because \)四边形\(ABCD\)是菱形,\(\therefore AB = AD = BC = CD\),\(\angle B = \angle D\),在\(\Delta ABE\)和\(\Delta ADF\)中,\(\left\{ {\begin{array}{*{20}{l}}
{\angle BAE = \angle DAF} \\
{AB = AD} \\
{\angle B = \angle D}
\end{array}} \right.\),\(\therefore \Delta ABE \cong \Delta ADF(ASA)\),\(\therefore BE = DF\),\(\therefore BC - BE = CD - DF\),即\(CE = CF\)。



第354题



参考答案:解:
\(\because \)四边形\(ABCD\)是菱形,\(BD = 10\),\(AC = 24\),
\(\therefore AB = BC = CD = AD\),\(OA = \frac{1}{2}AC = 12\),\(OB = \frac{1}{2}BD = 5\),\(AC \bot BD\),
\(\therefore \angle AOB = 90^\circ \),
\(\therefore AB = \sqrt {O{A^2} + O{B^2}} = \sqrt {{{12}^2} + {5^2}} = 13\),
\(\therefore \)菱形的周长\( = 4AB = 52\).


第355题

如图,菱形\(ABCD\)的对角线\(AC\)与\(BD\)相交于点\(O\),点\(E\)在\(BD\)上,连接\(AE\),\(CE\),\(\angle ABC = 60^\circ \),\(\angle BCE = 15^\circ \),\(ED = 4 + 4\sqrt 3 \),求\(AD\)的长。




参考答案:解:
\(\because \)四边形\(ABCD\)是菱形,\(\angle ABC = 60^\circ \),
\(\therefore \angle ADC = 60^\circ \),\(\angle BCD = 120^\circ \),\(AC \bot BD\),\(AO = CO\),\(\angle ADB = \angle CDB = 30^\circ \),\(\angle ACD = \angle ACB = 60^\circ \),
\(\therefore DO = \sqrt 3 CO = \sqrt 3 AO\),\(AD = 2AO\),
\(\because \angle BCE = 15^\circ \),
\(\therefore \angle ACE = 45^\circ \),
\(\therefore \angle ACE = \angle DEC = 45^\circ \),
\(\therefore EO = CO = AO\),
\(\because ED = 4 + 4\sqrt 3 \),
\(\therefore AO + \sqrt 3 AO = 4 + 4\sqrt 3 \),
\(\therefore AO = 4\),
\(\therefore AD = 8\)。





第359题


A.\(\angle A = \angle C\)

B.\(AB \bot BC\)

C.\(AC \bot BD\)

D.\(AC = BD\)


参考答案:C


第360题

已知,如图,\(\Delta ABC\)中,\(AD\)平分\(∠BAC\)交\(BC\)于点\(D\),过点\(D\)分别作\(DE//AC\)交AB于点E,\(DF//AB\) 交\(AC\)于点\(F\),证明四边形\(AEDF\)是菱形。


    



参考答案:证明:
\(\because DE//AC\),\(DF//AB\),
\(\therefore \)四边形\(AEDF\)是平行四边形,
\(\because AD\)平分\(\angle BAC\),
\(\therefore \angle BAD = \angle CAD\),
\(\because DF//AB\),
\(\therefore \angle ADF = \angle BAD\),
\(\therefore \angle CAD = \angle ADF\),
\(\therefore AF = DF\),
\(\therefore \)四边形\(AEDF\)是菱形。


进入题库练习及模拟考试