“微信扫一扫”进入题库练习及模拟考试
如图,菱形\(ABCD\)的对角线\(AC\)与\(BD\)相交于点\(O\),点\(E\)在\(BD\)上,连接\(AE\),\(CE\),\(\angle ABC = 60^\circ \),\(\angle BCE = 15^\circ \),\(ED = 4 + 4\sqrt 3 \),求\(AD\)的长。
参考答案:解:
\(\because \)四边形\(ABCD\)是菱形,\(\angle ABC = 60^\circ \),
\(\therefore \angle ADC = 60^\circ \),\(\angle BCD = 120^\circ \),\(AC \bot BD\),\(AO = CO\),\(\angle ADB = \angle CDB = 30^\circ \),\(\angle ACD = \angle ACB = 60^\circ \),
\(\therefore DO = \sqrt 3 CO = \sqrt 3 AO\),\(AD = 2AO\),
\(\because \angle BCE = 15^\circ \),
\(\therefore \angle ACE = 45^\circ \),
\(\therefore \angle ACE = \angle DEC = 45^\circ \),
\(\therefore EO = CO = AO\),
\(\because ED = 4 + 4\sqrt 3 \),
\(\therefore AO + \sqrt 3 AO = 4 + 4\sqrt 3 \),
\(\therefore AO = 4\),
\(\therefore AD = 8\)。