“微信扫一扫”进入题库练习及模拟考试
已知,如图,\(\Delta ABC\)中,\(AD\)平分\(∠BAC\)交\(BC\)于点\(D\),过点\(D\)分别作\(DE//AC\)交AB于点E,\(DF//AB\) 交\(AC\)于点\(F\),证明四边形\(AEDF\)是菱形。
参考答案:证明:
\(\because DE//AC\),\(DF//AB\),
\(\therefore \)四边形\(AEDF\)是平行四边形,
\(\because AD\)平分\(\angle BAC\),
\(\therefore \angle BAD = \angle CAD\),
\(\because DF//AB\),
\(\therefore \angle ADF = \angle BAD\),
\(\therefore \angle CAD = \angle ADF\),
\(\therefore AF = DF\),
\(\therefore \)四边形\(AEDF\)是菱形。