“微信扫一扫”进入考试题库练习及模拟考试
第121题
计算 (1)(﹣3ab﹣1)2•(a﹣2b2)﹣3 (2)÷(a﹣
).
参考答案:见解析
解析:
【考点】分式的混合运算;负整数指数幂.
【分析】(1)原式利用幂的乘方与积的乘方运算法则计算即可得到结果;
(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.
【解答】解:(1)(﹣3ab﹣1)2•(a﹣2b2)﹣3
=9a2b﹣2•a6b﹣6
=9a8b﹣8
=;
(2)÷(a﹣
)
=÷
=•
=.
参考答案:见解析
解析:
【考点】因式分解-十字相乘法等;因式分解-分组分解法.
【分析】根据题意给出的方法即可求出答案.
【解答】解:(1)x2﹣4x+3
=x2﹣4x+4﹣4+3
=(x﹣2)2﹣1
=(x﹣2+1)(x﹣2﹣1)
=(x﹣1)(x﹣3)
(2)4x2+12x﹣7
=4x2+12x+9﹣9﹣7
=(2x+3)2﹣16
=(2x+3+4)(2x+3﹣4)
=(2x+7)(2x﹣1)
参考答案:见解析
解析:
【考点】全等三角形的判定与性质;角平分线的性质.
【分析】(1)由等腰三角形的性质和角平分线的性质定理直接证明即可;
(2)利用等腰三角形的性质和全等三角形的判定定理ASA证得△AED≌△AFD,则由该全等三角形的对应边相等得到DE=DF.
【解答】解:
(1)证明:∵AB=AC,AD⊥BC,
∴∠BAD=∠CAD,
∵DE⊥AB,DF⊥AC
∴DE=DF;
(2)证明:∵AB=AC,AD⊥BC
∴∠BAD=∠CAD,
∵DE平分∠ADB,DF平分和∠ADC,
∴∠ADE=∠ADF=45°,
在△AED和△AFD中,
,
∴△AED≌△AFD(ASA),
∴DE=DF.
参考答案:见解析
解析:
【考点】分式方程的应用.
【分析】(1)首先设零售价为5x元,团购价为4x元,由题意可得等量关系:零售价用110元所购买的数量+6=团购价用100元所购买的数量,根据等量关系列出方程,计算出x的值;
(2)根据(1)中求得的贺年卡的零售价求学生数.
【解答】解:(1)设零售价为5x元,团购价为4x元,则
解得,,
经检验:x=是原分式方程的解,
5x=2.5
答:零售价为2.5元;
(2)学生数为=38(人)
答:王老师的班级里有38名学生.
参考答案:见解析
解析:
【考点】多边形内角与外角;三角形内角和定理;三角形的外角性质.
【分析】(1)首先延长BO交AC于点D,可得BOC=∠BDC+∠C,然后根据∠BDC=∠A+∠B,判断出∠BOC=∠B+∠C+∠A即可.
(2)a、首先根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,然后根据∠1+∠2+∠E=180°,可得x=∠A+∠B+∠C+∠D+∠E=180,据此解答即可.
b、首先根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,然后根据∠1+∠2+∠E=180°,可得x=∠A+∠B+∠C+∠D+∠E=180,据此解答即可.
c、首先延长EA交CD于点F,EA和BC交于点G,然后根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B,再根据∠GFC+∠FGC+∠C=180°,可得x=∠A+∠B+∠C+∠D+∠E=180°,据此解答即可.
(3)根据∠BOD=70°,可得∠A+∠C+∠E=70°,∠B+∠D+∠F=70°,据此求出∠A+∠B+∠C+∠D+∠E+∠F的度数是多少即可.
【解答】解:(1)如图①,延长BO交AC于点D,
∠BOC=∠BDC+∠C,
又∵∠BDC=∠A+∠B,
∴∠BOC=∠B+∠C+∠A.
(2)如图②,
,
根据外角的性质,可得
∠1=∠A+∠B,∠2=∠C+∠D,
∵∠1+∠2+∠E=180°,
∴x=∠A+∠B+∠C+∠D+∠E=180°.
如图③,
,
根据外角的性质,可得
∠1=∠A+∠B,∠2=∠C+∠D,
∵∠1+∠2+∠E=180°,
∴x=∠A+∠B+∠C+∠D+∠E=180°.
如图④,延长EA交CD于点F,EA和BC交于点G,
,
根据外角的性质,可得
∠GFC=∠D+∠E,∠FGC=∠A+∠B,
∵∠GFC+∠FGC+∠C=180°,
∴x=∠A+∠B+∠C+∠D+∠E=180°.
(3)如图⑤,
,
∵∠BOD=70°,
∴∠A+∠C+∠E=70°,
∴∠B+∠D+∠F=70°,
∴∠A+∠B+∠C+∠D+∠E+∠F=70°+70°=140°.
故答案为:180、180、180、140.
参考答案:见解析
解析:
【考点】整式的混合运算;规律型:数字的变化类.
【分析】利用多项式乘以多项式法则计算各式即可;
(1)根据上述规律写出结果即可;
(2)归纳总结得到一般性规律,写出即可;
(3)利用得出的规律计算即可得到结果.
【解答】解:(x﹣1)(x+1)=x2﹣1;
(x﹣1)(x2+x+1)=x3﹣1;
(x﹣1)(x3+x2+x+1)=x4﹣1,
故答案为:x2﹣1;x3﹣1;x4﹣1;
(1)(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;
(2)(x﹣1)(xn﹣1+xn﹣2+xn﹣3+…+x+1)=xn﹣1;
故答案为:(1)x7﹣1;(2)xn﹣1;
(3)1+2+22+23+24+…+235
=(2﹣1)
=236﹣1.
参考答案:见解析
解析:
【考点】四边形综合题.
【分析】(1)根据全等三角形的判定与性质,可得AG与BE的关系,∠BAE与∠DAG的关系,根据全等三角形的判定与性质,可得EF与GF的关系,根据等量代换,可得答案;
(2)根据补角的性质,可得∠B=∠ADG,根据全等三角形的判定与性质,可得AG与BE的关系,∠BAE与∠DAG的关系,根据全等三角形的判定与性质,可得EF与GF的关系,根据等量代换,可得答案;
(3)根据角的和差,可得∠OEF与∠AOB的关系,∠A与∠B的关系,根据(2)的探索,可得EF与AE、BF的关系,可得答案.
【解答】解:(1)在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG.
∵∠EAF=∠BAD,
∴∠BAE+∠DAF=∠EAF=∠BAD.
∵∠GAF=∠DAG+∠DAF,
∴∠GAF=∠BAE+∠DAF.
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△GAF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
故答案为:EF=BE+DF;
(2)EF=BE+DF仍然成立.
证明:如图1,延长FD到G,使DG=BE,连接AG,
∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,
∴∠B=∠ADG,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG.
∵∠EAF=∠BAD,
∴∠BAE+∠DAF=∠EAF=∠BAD.
∵∠GAF=∠DAG+∠DAF,
∴∠GAF=∠BAE+∠DAF.
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△GAF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
(3)如图2,
连接EF,延长AE、BF相交于点C,
∵∠AOB=∠AON+∠NCH+∠BOH=30+90+20=140°,
∠EOF=70°,
∴∠EOF=∠AOB,
又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,
∴符合探索延伸中的条件,
∴结论EF=AE+BF成立,
即EF=2×(60+80)=280海里.
答:此时两舰艇之间的距离是280海里.
第128题
下面四个图案中,是轴对称图形的是( )
A.
B.
C.
D.
参考答案:D
解析:
【考点】轴对称图形.
【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.
【解答】解:A、不是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项正确.
故选D.
第129题
若分式的值为0,则x的值为( )
A.﹣1
B.0
C.2
D.﹣1或2
参考答案:A
解析:
【考点】分式的值为零的条件.
【分析】根据分式的分子为0;分母不为0,分式的值为零,可得答案.
【解答】解:由分式的值为0,得
,解得x=﹣1,
故选:A.
第130题
如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )
A.20°
B.30°
C.35°
D.40°
参考答案:B
解析:
【考点】全等三角形的性质.
【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.
【解答】解:∵△ACB≌△A′CB′,
∴∠ACB=∠A′CB′,
即∠ACA′+∠A′CB=∠B′CB+∠A′CB,
∴∠ACA′=∠B′CB,
又∠B′CB=30°
∴∠ACA′=30°.
故选:B.
第131题
下列各式由左边到右边的变形中,属于分解因式的是( )
A.a(x+y)=ax+ay
B.x2﹣4x+4=x(x﹣4+)
C.10x2﹣5x=5x(2x﹣1)
D.x2﹣16+3x=(x+4)(x﹣4)+3x
参考答案:C
解析:
【考点】因式分解的意义.
【分析】利用因式分解的意义判断即可.
【解答】解:下列各式由左边到右边的变形中,属于分解因式的是10x2﹣5x=5x(2x﹣1),
故选C
第132题
如果一个多边形的每个内角都相等,且内角和为1800度,那么这个多边形的一个外角是( )
A.30°
B.36°
C.60°
D.72°
参考答案:A
解析:
【考点】多边形内角与外角.
【分析】设这个多边形是n边形,它的内角和可以表示成(n﹣2)•180°,就得到关于n的方程,求出边数n.然后根据多边形的外角和是360°,多边形的每个内角都相等即每个外角也相等,这样就能求出多边形的一个外角.
【解答】解:设这个多边形是n边形,
根据题意得:(n﹣2)•180°=1800,
解得n=12;
那么这个多边形的一个外角是360÷12=30度,
即这个多边形的一个外角是30度.
故本题选A.
第134题
用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,则该等腰三角形的腰长为( )
A.4cm
B.6cm
C.4cm或6cm
D.4cm或8cm
参考答案:B
解析:
【考点】等腰三角形的性质;三角形三边关系.
【分析】分已知边4cm是腰长和底边两种情况讨论求解.
【解答】解:4cm是腰长时,底边为16﹣4×2=8,
∵4+4=8,
∴4cm、4cm、8cm不能组成三角形;
4cm是底边时,腰长为(16﹣4)=6cm,
4cm、6cm、6cm能够组成三角形;
综上所述,它的腰长为6cm.
故选:B.
第135题
若3x=4,3y=6,则3x﹣2y的值是( )
A.
B.9
C.
D.3
参考答案:A
解析:
【考点】同底数幂的除法;幂的乘方与积的乘方.
【分析】利用同底数幂的除法运算法则得出3x﹣2y=3x÷(3y)2,进而代入已知求出即可.
【解答】解:3x﹣2y=3x÷(3y)2=4÷62=.
故选:A.
第136题
如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为( )
A.15°
B.22.5°
C.30°
D.45°
参考答案:C
解析:
【考点】轴对称-最短路线问题;等边三角形的性质.
【分析】过E作EM∥BC,交AD于N,连接CM交AD于F,连接EF,推出M为AB中点,求出E和M关于AD对称,根据等边三角形性质求出∠ACM,即可求出答案.
【解答】解:
过E作EM∥BC,交AD于N,
∵AC=4,AE=2,
∴EC=2=AE,
∴AM=BM=2,
∴AM=AE,
∵AD是BC边上的中线,△ABC是等边三角形,
∴AD⊥BC,
∵EM∥BC,
∴AD⊥EM,
∵AM=AE,
∴E和M关于AD对称,
连接CM交AD于F,连接EF,
则此时EF+CF的值最小,
∵△ABC是等边三角形,
∴∠ACB=60°,AC=BC,
∵AM=BM,
∴∠ECF=∠ACB=30°,
故选C.
第137题
一粒芝麻约有0.000002千克,0.000002用科学记数法表示为 千克.
参考答案:2×10﹣6
解析:
【考点】科学记数法—表示较小的数.
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【解答】解:0.000002用科学记数法表示为 2×10﹣6千克,
故答案为:2×10﹣6.
第138题
如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为 .
参考答案:3
解析:
【考点】角平分线的性质;垂线段最短.
【分析】根据垂线段最短可知PQ⊥OM时,PQ的值最小,再根据角平分线上的点到角的两边的距离相等可得PQ=PA.
【解答】解:根据垂线段最短,PQ⊥OM时,PQ的值最小,
∵OP平分∠MON,PA⊥ON,
∴PQ=PA=3.
故答案为:3.
第139题
如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为 .
参考答案:(6a+15)cm2
解析:
【考点】图形的剪拼.
【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.
【解答】解:矩形的面积为:
(a+4)2﹣(a+1)2
=(a2+8a+16)﹣(a2+2a+1)
=a2+8a+16﹣a2﹣2a﹣1
=6a+15.
故答案为:(6a+15)cm2,
第140题
如图,已知△ABC中,∠BAC=140°,现将△ABC进行折叠,使顶点B、C均与顶点A重合,则∠DAE的度数为 .
参考答案:100°
解析:
【考点】翻折变换(折叠问题).
【分析】如图,由三角形内角和定理求出∠B+∠C=40°;证明∠ADE+∠AED=2(α+β)=80°,即可解决问题.
【解答】解:如图,∵∠BAC=140°,
∴∠B+∠C=180°﹣140°=40°;
由题意得:∠B=∠DAB(设为α),∠C=∠EAC(设为β),
∴∠ADE=2α,∠AED=2β,
∴∠DAE=180°﹣2(α+β)=180°﹣80°=100°,
故答案为100°.