“微信扫一扫”进入题库练习及模拟考试
计算下列各式:
(x﹣1)(x+1)= ;
(x﹣1)(x2+x+1)= ;
(x﹣1)(x3+x2+x+1)= ;
…
(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)= ;
(2)你能否由此归纳出一般性的结论(x﹣1)(xn﹣1+xn﹣2+xn﹣3+…+x+1)= (其中n为正整数);
(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.
参考答案:见解析
解析:
【考点】整式的混合运算;规律型:数字的变化类.
【分析】利用多项式乘以多项式法则计算各式即可;
(1)根据上述规律写出结果即可;
(2)归纳总结得到一般性规律,写出即可;
(3)利用得出的规律计算即可得到结果.
【解答】解:(x﹣1)(x+1)=x2﹣1;
(x﹣1)(x2+x+1)=x3﹣1;
(x﹣1)(x3+x2+x+1)=x4﹣1,
故答案为:x2﹣1;x3﹣1;x4﹣1;
(1)(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;
(2)(x﹣1)(xn﹣1+xn﹣2+xn﹣3+…+x+1)=xn﹣1;
故答案为:(1)x7﹣1;(2)xn﹣1;
(3)1+2+22+23+24+…+235
=(2﹣1)
=236﹣1.