“微信扫一扫”进入题库练习及模拟考试
(1)问题背景:
如图①:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分别是BC、CD上的点.且∠EAF=60°.探究图中线段BE、EF、FD之间的数量关系.小明同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;
(2)探索延伸:
如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立?说明理由;
(3)实际应用:
如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的
B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.2小时后,甲、乙两舰艇分别到达E、F处,此时在指挥中心观测到两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.
参考答案:见解析
解析:
【考点】四边形综合题.
【分析】(1)根据全等三角形的判定与性质,可得AG与BE的关系,∠BAE与∠DAG的关系,根据全等三角形的判定与性质,可得EF与GF的关系,根据等量代换,可得答案;
(2)根据补角的性质,可得∠B=∠ADG,根据全等三角形的判定与性质,可得AG与BE的关系,∠BAE与∠DAG的关系,根据全等三角形的判定与性质,可得EF与GF的关系,根据等量代换,可得答案;
(3)根据角的和差,可得∠OEF与∠AOB的关系,∠A与∠B的关系,根据(2)的探索,可得EF与AE、BF的关系,可得答案.
【解答】解:(1)在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG.
∵∠EAF=∠BAD,
∴∠BAE+∠DAF=∠EAF=∠BAD.
∵∠GAF=∠DAG+∠DAF,
∴∠GAF=∠BAE+∠DAF.
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△GAF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
故答案为:EF=BE+DF;
(2)EF=BE+DF仍然成立.
证明:如图1,延长FD到G,使DG=BE,连接AG,
∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,
∴∠B=∠ADG,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG.
∵∠EAF=∠BAD,
∴∠BAE+∠DAF=∠EAF=∠BAD.
∵∠GAF=∠DAG+∠DAF,
∴∠GAF=∠BAE+∠DAF.
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△GAF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
(3)如图2,
连接EF,延长AE、BF相交于点C,
∵∠AOB=∠AON+∠NCH+∠BOH=30+90+20=140°,
∠EOF=70°,
∴∠EOF=∠AOB,
又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,
∴符合探索延伸中的条件,
∴结论EF=AE+BF成立,
即EF=2×(60+80)=280海里.
答:此时两舰艇之间的距离是280海里.