“微信扫一扫”进入考试题库练习及模拟考试

高中数学必修 第一册(648题)


第61题



参考答案:\( A\cap B=\left\{x\right|2\) < \( x\le 3\}\)
解:由 \( 3\le {3}^{x}\le 27\) 得 \( 1\le x\le 3\) ,故 \( A=\left\{x\right||1\le x\le 3\}\) ;
由 \( {\text{log}}_{2}x\) > \( 1\) 得 \( x\) > \( 2\) ,故 \( B=\left\{x\right|x\) > \( 2\}\) ∴ \( A\cap B=\left\{x\right|2\) < \( x\le 3\}\)


第62题



参考答案:\( \left({C}_{R}B\right)\cup A\) =\( \left\{x\right|x\le 3\}\)
解:由 \( B=\left\{x\right|x\) > \( 2\}\) 得 \( {C}_{R}B=\left\{x\right|x\le 2\}\)
∴ \( \left({C}_{R}B\right)\cup A=\left\{x\right|x\le 3\}\)



第64题


A.\(τ=\left \{ {\varnothing ,\left \{ {a} \right \} ,\left \{ {c} \right \} ,\left \{ {a,b,c} \right \} } \right \} \)

B.\(τ=\left \{ {\varnothing ,\left \{ {b} \right \} ,\left \{ {c} \right \} ,\left \{ {b,c} \right \} ,\left \{ {a,b,c} \right \} } \right \} \)

C.\(τ=\left \{ {\varnothing ,\left \{ {a} \right \} ,\left \{ {a,b} \right \} ,\left \{ {a,c} \right \} } \right \} \)

D.\(τ=\left \{ {\varnothing ,\left \{ {a,c} \right \} ,\left \{ {b,c} \right \} ,\left \{ {c} \right \} ,\left \{ {a,b,c} \right \} } \right \} \)


参考答案:BD


第65题



参考答案:\(C=\left \{ {0,1,3} \right \} \)

详解:由已知\(A=\left \{ {x|{x}^{2}-4x+3=0} \right \} =\left \{ {1,3} \right \} \)

\(\because A\cap B=B\),\(B\subseteq A\)

当\(a=0\)时,\(B=\varnothing \),符合题意

当\(a≠0\)时,\(B=\left \{ {\frac {3} {a}} \right \} \),

则\(\frac {3} {a}=1\)或\(\frac {3} {a}=3\)

\(\therefore a=3\)或\(a=1\)

所以集合\(C=\left \{ {0,1,3} \right \} \).


第66题



参考答案:\(a=5\)或\(a=-1\)

\(A=\left \{ {x|{x}^{2}-3x+2=0} \right \} =\left \{ {x|\left ( {x-1} \right )\left ( {x-2} \right )=0} \right \} =\left \{ {1,2} \right \} \)

若集合\(A\cap B=\left \{ {2} \right \} \),则\(2\in B\)且\(1∉B\),

将\(x=2\)代入方程\({x}^{2}-2\left ( {a+1} \right )x+{a}^{2}-5=0\)可得\({a}^{2}-4a-5=0\),

解得:\(a=5\)或\(a=-1\);

当\(a=5\)时,原方程可化为\({x}^{2}-12x+20=0\),解得:\(x=2\)或\(x=10\),

此时\(B=\left \{ {2,-2} \right \} \),满足\(A\cap B=\left \{ {2} \right \} \),

当\(a=-1\)时,原方程可化为\({x}^{2}-4=0\),解得:\(x=2\)或\(x=-2\),

此时\(B=\left \{ {2,-2} \right \} \),满足\(A\cap B=\left \{ {2} \right \} \),

所以\(a=5\)或\(a=-1\);


第67题



参考答案:\(a<-3\)

若\(A\cup B=A\),则\(B\subseteq A\),所以\(B=\varnothing \)或\(B=\left \{ {2} \right \} \)或\(B=\left \{ {1} \right \} \)或\(B=\left \{ {1,2} \right \} \);

当\(B=\varnothing \)时,方程\({x}^{2}-2\left ( {a+1} \right )x+{a}^{2}-5=0\)无解,所以\(Δ=4\left ( {a+1} \right )^{2}-4\left ( {{a}^{2}-5} \right )<0\),

解得:\(a<-3\),

若\(B=\left \{ {2} \right \} \),则方程\({x}^{2}-2\left ( {a+1} \right )x+{a}^{2}-5=0\)有两个相等的实根\(2\),

所以\(\left \{ \begin{gathered} {2+2=2\left ( {a+1} \right )} \\ {2\times 2={a}^{2}-5} \end{gathered} \right .\)此时无解,

若\(B=\left \{ {1} \right \} \),则方程\({x}^{2}-2\left ( {a+1} \right )x+{a}^{2}-5=0\)有两个相等的实根\(1\),

所以\(\left \{ \begin{gathered} {1+1=2\left ( {a+1} \right )} \\ {1\times 1={a}^{2}-5} \end{gathered} \right .\)此时无解,

若\(B=\left \{ {1,2} \right \} \),则方程\({x}^{2}-2\left ( {a+1} \right )x+{a}^{2}-5=0\)有两个不相等的实根\(1,2\)

所以\(\left \{ \begin{gathered} {1+2=2\left ( {a+1} \right )} \\ {1\times 2={a}^{2}-5} \end{gathered} \right .\)此时无解,

综上所述:实数\(a\)的取值范围为\(a<-3\).


第68题



参考答案:\(T=\left \{ {0,2} \right \} \);

根据题意,由集合\(A=\left \{ {1,3} \right \} \),计算集合\(S=\left \{ {2,4,6} \right \} \),\(T=\left \{ {0,2} \right \} \),所以\(2\in S\);


第69题



参考答案:由于\(A=\left \{ {{x}_{1},{x}_{2},{x}_{3},{x}_{4}} \right \} \),\({x}_{1}<{x}_{2}<{x}_{3}<{x}_{4}\),且\(T=A\),

所以\(T\)中也只包含4个元素,即\(T=\left \{ {0,{x}_{2}-{x}_{1},{x}_{3}-{x}_{1},{x}_{4}-{x}_{1}} \right \} \),

剩下的元素满足\({x}_{2}-{x}_{1}={x}_{3}-{x}_{2}={x}_{4}-{x}_{3}\),即\({x}_{1}+{x}_{4}={x}_{2}+{x}_{3}\);


第70题



参考答案:集合A中元素的个数的最大值为1348.

设\(A=\left \{ {{a}_{1},{a}_{2},\cdots ,{a}_{k}} \right \} \)满足题意,其中\({a}_{1}<{a}_{2}<\cdots <{a}_{k}\),

则\(2{a}_{1}<{a}_{1}+{a}_{2}<{a}_{1}+{a}_{3}<\cdots <{a}_{1}+{a}_{k}<{a}_{2}+{a}_{k}<{a}_{3}+{a}_{k}<\cdots <{a}_{k-1}+{a}_{k}<2{a}_{k}\),

所以\(\left | {S} \right |\geq 2k-1\),\({a}_{1}-{a}_{1}<{a}_{2}-{a}_{1}<{a}_{3}-{a}_{1}<\cdots <{a}_{k}-{a}_{1}\),所以\(\left | {T} \right |>k\),

因为\(S\cap T=\varnothing \),由容斥原理,\(\left | {S\cup T} \right |=\left | {S} \right |+\left | {T} \right |\geq 3k-1\),

\(S\cup T\)最小的元素为0,最大的元素为\(2{a}_{k}\),所以\(\left | {S\cup T} \right |\leq 2{a}_{k}+1\),

所以\(3k-1\leq 2{a}_{k}+1\leq 4043\left ( {k\in {\text{N}}^{*}} \right )\),解得\(k\leq 1348\),

实际上当\(A=\left \{ {674,675,\cdots ,2021} \right \} \)时满足题意,证明如下:

设\(A=\left \{ {m,m+1,m+2,\cdots ,2021} \right \} \left ( {m\in \text{N}} \right )\),

则\(S=\left \{ {2m,2m+1,2m+2,\cdots ,4042} \right \} \),\(T=\left \{ {0,1,2,\cdots ,2021-m} \right \} \),

依题意,有\(2021-m<2m\),即\(m>\frac {2021} {3}\),所以m的最小值为674,于是当\(m=674\)时,

集合\(A\)中的元素最多,即\(A=\left \{ {674,675,\cdots ,2021} \right \} \)时满足题意.

综上所述,集合\(A\)中元素的个数的最大值为1348.


第71题


A.充要条件

B.充分不必要条件

C.必要不充分条件

D.既不充分也不必要条件


参考答案:C


第72题


A.充分不必要条件

B.必要不充分条件

C.充分必要条件

D.既不充分也不必要条件


参考答案:A


第73题


A.\(t > - 1\)

B.\(t > 1\)或\(t < 0\)

C.\(t > 1\)或\(t < \frac{1}{3}\)

D.\(t < \frac{1}{3}\)或\(t > \frac{2}{3}\)


参考答案:D


第74题


A.\(\left( {\frac{1}{4},\frac{3}{4}} \right)\)

B.\(\left( {\frac{3}{4},1} \right)\)

C.\(\left( {\frac{1}{4},1} \right)\)

D.\(\left( {0,\frac{3}{4}} \right) \cup (1, + \infty )\)


参考答案:A


第75题


A.充分不必要条件

B.必要不充分条件

C.充分必要条件

D.既不充分也不必要条件


参考答案:A



第77题


A.\(\left\{ {\frac{{{S_n}}}{n}} \right\}\)是等差数列

B.\({S_n}\)是关于\( n\)的二次函数

C.\(\left\{ {n{a_n}} \right\}\)不可能是等差数列

D.“\(d > 0\)”是“\({S_{n _ 1}} + {S_{n + 1}} > 2{S_n}\)”的充要条件


参考答案:AD





进入题库练习及模拟考试