“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)


已知集合\(A=\left \{ {x|{x}^{2}-3x+2=0,x\in \text{R}} \right \} \),集合\(B=\left \{ {x|{x}^{2}-2\left ( {a+1} \right )x+{a}^{2}-5=0,x\in \text{R}} \right \} \)



\(A\cup B=A\),求实数\(a\)的取值范围.




知识点:第一章 集合与常用逻辑用语


参考答案:\(a<-3\)

若\(A\cup B=A\),则\(B\subseteq A\),所以\(B=\varnothing \)或\(B=\left \{ {2} \right \} \)或\(B=\left \{ {1} \right \} \)或\(B=\left \{ {1,2} \right \} \);

当\(B=\varnothing \)时,方程\({x}^{2}-2\left ( {a+1} \right )x+{a}^{2}-5=0\)无解,所以\(Δ=4\left ( {a+1} \right )^{2}-4\left ( {{a}^{2}-5} \right )<0\),

解得:\(a<-3\),

若\(B=\left \{ {2} \right \} \),则方程\({x}^{2}-2\left ( {a+1} \right )x+{a}^{2}-5=0\)有两个相等的实根\(2\),

所以\(\left \{ \begin{gathered} {2+2=2\left ( {a+1} \right )} \\ {2\times 2={a}^{2}-5} \end{gathered} \right .\)此时无解,

若\(B=\left \{ {1} \right \} \),则方程\({x}^{2}-2\left ( {a+1} \right )x+{a}^{2}-5=0\)有两个相等的实根\(1\),

所以\(\left \{ \begin{gathered} {1+1=2\left ( {a+1} \right )} \\ {1\times 1={a}^{2}-5} \end{gathered} \right .\)此时无解,

若\(B=\left \{ {1,2} \right \} \),则方程\({x}^{2}-2\left ( {a+1} \right )x+{a}^{2}-5=0\)有两个不相等的实根\(1,2\)

所以\(\left \{ \begin{gathered} {1+2=2\left ( {a+1} \right )} \\ {1\times 2={a}^{2}-5} \end{gathered} \right .\)此时无解,

综上所述:实数\(a\)的取值范围为\(a<-3\).

进入考试题库