“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)


已知集合\(A\)为非空数集,定义:\(S=\left \{ {x|x=a+b,a,b\in A} \right \} \)\(T=\left \{ {x|x=\left | {a-b} \right |,a,b\in A} \right \} \).



若集合\(A\subseteq \left \{ {x|0\leq x\leq 2021,x\in \text{N}} \right \} \)\(S\cap T=\varnothing \),记\(\left | {A} \right |\)为集合\(A\)中元素的个数,求\(\left | {A} \right |\)的最大值.




知识点:第一章 集合与常用逻辑用语


参考答案:集合A中元素的个数的最大值为1348.

设\(A=\left \{ {{a}_{1},{a}_{2},\cdots ,{a}_{k}} \right \} \)满足题意,其中\({a}_{1}<{a}_{2}<\cdots <{a}_{k}\),

则\(2{a}_{1}<{a}_{1}+{a}_{2}<{a}_{1}+{a}_{3}<\cdots <{a}_{1}+{a}_{k}<{a}_{2}+{a}_{k}<{a}_{3}+{a}_{k}<\cdots <{a}_{k-1}+{a}_{k}<2{a}_{k}\),

所以\(\left | {S} \right |\geq 2k-1\),\({a}_{1}-{a}_{1}<{a}_{2}-{a}_{1}<{a}_{3}-{a}_{1}<\cdots <{a}_{k}-{a}_{1}\),所以\(\left | {T} \right |>k\),

因为\(S\cap T=\varnothing \),由容斥原理,\(\left | {S\cup T} \right |=\left | {S} \right |+\left | {T} \right |\geq 3k-1\),

\(S\cup T\)最小的元素为0,最大的元素为\(2{a}_{k}\),所以\(\left | {S\cup T} \right |\leq 2{a}_{k}+1\),

所以\(3k-1\leq 2{a}_{k}+1\leq 4043\left ( {k\in {\text{N}}^{*}} \right )\),解得\(k\leq 1348\),

实际上当\(A=\left \{ {674,675,\cdots ,2021} \right \} \)时满足题意,证明如下:

设\(A=\left \{ {m,m+1,m+2,\cdots ,2021} \right \} \left ( {m\in \text{N}} \right )\),

则\(S=\left \{ {2m,2m+1,2m+2,\cdots ,4042} \right \} \),\(T=\left \{ {0,1,2,\cdots ,2021-m} \right \} \),

依题意,有\(2021-m<2m\),即\(m>\frac {2021} {3}\),所以m的最小值为674,于是当\(m=674\)时,

集合\(A\)中的元素最多,即\(A=\left \{ {674,675,\cdots ,2021} \right \} \)时满足题意.

综上所述,集合\(A\)中元素的个数的最大值为1348.

进入考试题库