“微信扫一扫”进入题库练习及模拟考试
已知集合
若集合
参考答案:集合A中元素的个数的最大值为1348.
设\(A=\left \{ {{a}_{1},{a}_{2},\cdots ,{a}_{k}} \right \} \)满足题意,其中\({a}_{1}<{a}_{2}<\cdots <{a}_{k}\),
则\(2{a}_{1}<{a}_{1}+{a}_{2}<{a}_{1}+{a}_{3}<\cdots <{a}_{1}+{a}_{k}<{a}_{2}+{a}_{k}<{a}_{3}+{a}_{k}<\cdots <{a}_{k-1}+{a}_{k}<2{a}_{k}\),
所以\(\left | {S} \right |\geq 2k-1\),\({a}_{1}-{a}_{1}<{a}_{2}-{a}_{1}<{a}_{3}-{a}_{1}<\cdots <{a}_{k}-{a}_{1}\),所以\(\left | {T} \right |>k\),
因为\(S\cap T=\varnothing \),由容斥原理,\(\left | {S\cup T} \right |=\left | {S} \right |+\left | {T} \right |\geq 3k-1\),
\(S\cup T\)最小的元素为0,最大的元素为\(2{a}_{k}\),所以\(\left | {S\cup T} \right |\leq 2{a}_{k}+1\),
所以\(3k-1\leq 2{a}_{k}+1\leq 4043\left ( {k\in {\text{N}}^{*}} \right )\),解得\(k\leq 1348\),
实际上当\(A=\left \{ {674,675,\cdots ,2021} \right \} \)时满足题意,证明如下:
设\(A=\left \{ {m,m+1,m+2,\cdots ,2021} \right \} \left ( {m\in \text{N}} \right )\),
则\(S=\left \{ {2m,2m+1,2m+2,\cdots ,4042} \right \} \),\(T=\left \{ {0,1,2,\cdots ,2021-m} \right \} \),
依题意,有\(2021-m<2m\),即\(m>\frac {2021} {3}\),所以m的最小值为674,于是当\(m=674\)时,
集合\(A\)中的元素最多,即\(A=\left \{ {674,675,\cdots ,2021} \right \} \)时满足题意.
综上所述,集合\(A\)中元素的个数的最大值为1348.