“微信扫一扫”进入考试题库练习及模拟考试
A.18
B.30
C.24
D.27
参考答案:D
                            第122题
                             如图,点
A.\(58^\circ \)
B.\(64^\circ \)
C.\(122^\circ \)
D.\(124^\circ \)
参考答案:C
A.10
B.8
C.6
D.4
参考答案:C
参考答案:\(1\)
                                参考答案:\(\because \angle B = 90^\circ \),\(\therefore BD \bot AB\)。\(\because AD\)为\(\angle BAC\)的平分线,且\(DF \bot AC\),\(\therefore DB = DF\)。在\({\rm{Rt}}\Delta {\rm{BDE}}\)和\({\rm{Rt}}\Delta {\rm{FDC}}\)中,\(\left\{ {\begin{array}{*{20}{l}}
  {DE = DC} \\ 
  {DB = DF} 
\end{array}} \right.\),\(\therefore {\rm{Rt}}\Delta {\rm{BDE}} \cong {\rm{Rt}}\Delta {\rm{FDC}}({\rm{HL}})\),\(\therefore BE = CF\)。
                            
参考答案:
证明:如图,过点
在
  {\angle ACF = \angle DEC} \\ 
  {\angle AFC = \angle CDE} \\ 
  {AC = CE} 
\end{array}} \right.\)

A.\(50^\circ \)
B.\(60^\circ \)
C.\(65^\circ \)
D.\(120^\circ \)
参考答案:B
参考答案:①\(BC = EF\)(\(BE = CF\))②\(\angle A = \angle D\)③\(\angle ACB = \angle F\)(\(AC//DF\))
A.\(\angle BFE + \angle BGE = 90^\circ \)
B.\(\angle BFE + \angle BGE = 180^\circ \)
C.\(\angle BFE = 2\angle BGE\)
D.\(\angle BFE - \angle BGE = 90^\circ \)
参考答案:B
                            第131题
                             如图,已知
                                参考答案:证明:\(\because AB//CD\),\(\therefore \angle 3 = \angle 4\),在\(\Delta ABO\)和\(\Delta DCO\)中,\(\left\{ {\begin{array}{*{20}{l}}
  {\angle 3 = \angle 4} \\ 
  {OA = OD} \\ 
  {\angle 1 = \angle 2} 
\end{array}} \right.\),\(\therefore \Delta ABO \cong \Delta DCO(ASA)\),\(\therefore AB = CD\),\(\because \angle 3 = \angle 4\),\(\therefore \angle CDF = \angle BAE\),在\(\Delta ABE\)和\(\Delta DCF\)中,\(\left\{ {\begin{array}{*{20}{l}}
  {AE = DF} \\ 
  {\angle BAE = \angle CDF} \\ 
  {AB = CD} 
\end{array}} \right.\),\(\therefore \Delta ABE \cong \Delta DCF(SAS)\),\( EB=CF\)。
                            
                            第132题
                             求证:
                                参考答案:证明:正五边形\(ABCDE\)中,\(AB = BC\),\(\angle ABM = \angle C\),在\(\Delta ABM\)和\(\Delta BCN\)中\(\left\{ {\begin{array}{*{20}{l}}
  {AB = BC} \\ 
  {\angle ABM = \angle C} \\ 
  {BM = CN} 
\end{array}} \right.\),\(\therefore \Delta ABM \cong \Delta BCN(SAS)\);
                            
                            第133题
                             求
参考答案:\(\because \Delta ABM \cong \Delta BCN\),\(\therefore \angle BAM = \angle CBN\),\(\therefore \angle APN = \angle BAM + \angle ABP\)\( = \angle CBN + \angle ABP\)\( = \angle ABC\)\( = \frac{{(5 - 2) \times 180^\circ }}{5}\)\( = 108^\circ \)。
参考答案:
证明:延长
在
  BD = CD  \\
  \angle BDM = \angle FDC  \\
  MD = FD  \\ 
\end{cases}\)
在

参考答案:\(80^\circ \)
A.\(44cm\)
B.\(45cm\)
C.\(46cm\)
D.\(48cm\)
参考答案:B
参考答案:①\(BC = EF\)②\(\angle A = \angle D\)③\(\angle B = \angle E\)
A.\(68^\circ \)
B.\(69^\circ \)
C.\(71^\circ \)
D.\(72^\circ \)
参考答案:C
                                参考答案:证明:\(\because AB//ED\),\(\therefore \angle EAB = \angle E\),\(\because \angle DAB = \angle BAE + \angle B\),\(\angle DAB = \angle BAE + \angle DAE\),\(\therefore \angle B = \angle DAE\),在\(\Delta ABC\)和\(\Delta EAD\)中,\(\left\{ {\begin{array}{*{20}{l}}
  {\angle B = \angle DAE} \\ 
  {AB = EA} \\ 
  {\angle BAC = \angle E} 
\end{array}} \right.\),\(\therefore \Delta ABC \cong \Delta EAD(ASA)\),\(\therefore AC = ED\).
                            
                                参考答案:证明:(1)\(\because AC\)是角平分线,\(CE \bot AB\)于\(E\),\(CF \bot AD\)于\(F\),\(\therefore CE = CF\),在\({\rm{Rt}}\Delta {\rm{BCE}}\)和\({\rm{Rt}}\Delta {\rm{DCF}}\)中,\(\left\{ {\begin{array}{*{20}{l}}
  {BC = DC} \\ 
  {CE = CF} 
\end{array}} \right.\)\(\therefore \Delta BCE \cong \Delta DCF(HL)\);(2)在\({\rm{Rt}}\Delta {\rm{FAC}}\)和\({\rm{Rt}}\Delta {\rm{EAC}}\)中,\(\left\{ {\begin{array}{*{20}{l}}
  {AC = AC} \\ 
  {CE = CF} 
\end{array}} \right.\),\(\therefore Rt\Delta FAC \cong Rt\Delta EAC(HL)\),\(\therefore AF = AE\),\(\because \Delta BCE \cong \Delta DCF\),\(\therefore BE = DF\),\(\therefore AB + AD = (AE + BE) + (AF - DF) = 2AE\)。