“微信扫一扫”进入题库练习及模拟考试

初中数学八年级上册试题库(555题)


如图,\(\Delta ABC\)中,\(D\)\(BC\)中点,\(E\)\(F\)分别为\(AB\)\(AC\)上的点,且满足\(ED \bot DF\),连接\(EF\),求证:\(BE + FC > EF\)

图片 7



知识点:第十二章 全等三角形


参考答案:

证明:延长\(FD\)\(M\)使\(MD = FD\),连接\(BM\)\(EM\)

\(\Delta BDM\)\(\Delta CDF\)

\(\begin{cases}
BD = CD \\
\angle BDM = \angle FDC \\
MD = FD \\
\end{cases}\)

\(\therefore \Delta BDM \cong \Delta CDF(SAS)\)

\(\therefore BM = CF\)

\(\because ED \bot DF\)\(MD = FD\)

\(\therefore EM = EF\)

\(\Delta BME\)中,\(BE + BM > EM\)

\(\therefore BE + FC > EF\)

图片 6

进入考试题库