“微信扫一扫”进入题库练习及模拟考试

初中数学八年级上册试题库(555题)


已知,如图,\(\Delta ABC\)中,\(\angle C = 90^\circ \)\(D\)\(AB\)上一点,\(DE \bot CD\)\(D\),交\(BC\)\(E\),且有\(AC = AD = CE\),求证:\(DE = \frac{1}{2}CD\)



知识点:第十二章 全等三角形


参考答案:

证明:如图,过点\(A\)\(AF \bot CD\)

\(\because \angle C = 90^\circ \)\(DE \bot CD\)

\(\therefore \angle ACF + \angle DCE = \angle DCE + \angle DEC\)

\(\therefore \angle ACF = \angle DEC\)

\(\Delta ACF\)\(\Delta CED\)中,

\(\left\{ {\begin{array}{*{20}{l}}
{\angle ACF = \angle DEC} \\
{\angle AFC = \angle CDE} \\
{AC = CE}
\end{array}} \right.\)

\(\therefore \Delta ACF \cong \Delta CED(AAS)\)

\(\therefore CF = DE\)

\(\because AC = AD\),且\(AF \bot CD\)

\(\therefore CF = \frac{1}{2}CD\)

\(\therefore DE = \frac{1}{2}CD\)

进入考试题库