“微信扫一扫”进入考试题库练习及模拟考试

初中数学八年级上册试题库(555题)






第105题

如图,在四边形\(ABCD\)中,\(AB//CD\),点\(E\)\(BC\)的中点,\(DE\)平分\(\angle ADC\).求证:\(AE\)\(\angle DAB\)的平分线。

图片 1



参考答案:

过点\(E\)\(EH \bot AB\)于点\(H\),反向延长\(EH\)\(DC\)的延长线于点\(G\),过点\(E\)\(EF \bot AD\)于点\(F\)

\(\because AB//CD\)\(EH \bot AB\)

\(\therefore EG \bot DC\)

\(\because \)\(E\)\(BC\)的中点,

\(\therefore CE = BE\)

\(\Delta CGE\)\(\Delta BHE\)中,

\(\left\{ {\begin{array}{*{20}{l}}
{\angle GCE = \angle B} \\
{CE = EB} \\
{\angle CEG = \angle BEH}
\end{array}} \right.\)

\(\therefore \Delta CGE \cong \Delta BHE\)

\(\therefore GE = EH\)

\(\because DE\)平分\(\angle ADC\)

\(\therefore GE = EF\)

\(\therefore GE = EH\)

\(\therefore EF = EH\)

\(\therefore AE\)\(\angle DAB\)的平分线.

图片 8


第106题

如图:已知\(BD = CD\)\(BF \bot AC\)\(CE \bot AB\),求证:点\(D\)\(\angle BAC\)的平分线上。



参考答案:\(\because BF \bot AC\),\(CE \bot AB\),\(\therefore \angle BED = \angle CFD = 90^\circ \),在\(\Delta BED\)和\(\Delta CFD\)中,\(\left\{ {\begin{array}{*{20}{l}}
{\angle BED = \angle CFD} \\
{\angle BDE = \angle CDF} \\
{BD = CD}
\end{array}} \right.\),\(\therefore \Delta BED \cong \Delta CFD(AAS)\),\(\therefore DE = DF\),又\(\because DE \bot AB\),\(DF \bot AC\),\(\therefore \)点\(D\)在\(\angle BAC\)的平分线上.






第111题

如图,在\(\Delta ABC\)中,\(\angle C = 90^\circ \)\(AD\)平分\(\angle CAB\)\(CD = 1\)\(AB = 4\),则\(\Delta ABD\)的面积是 ___

图片 21



参考答案:过点\(D\)\(DE \bot AB\)于点\(E\)\(\because \angle C = 90^\circ \)\(AD\)平分\(\angle CAB\)\(DE \bot AB\)\(\therefore DC = DE = 1\)\(\because AB = 4\)\(\therefore {S_{\Delta ABD}} = \frac{1}{2} \times DE \times AB = \frac{1}{2} \times 1 \times 4 = 2\)故答案为:2图片 7


第112题

如图,\(\Delta ABC\)的外角的平分线\(BD\)\(CE\)相交于点\(P\),若点\(P\)\(AC\)的距离为5,则点\(P\)\(AB\)的距离为 ___

图片 2



参考答案:如图,过点\(P\)\(PF \bot AC\)\(F\)\(PG \bot BC\)\(G\)\(PH \bot AB\)\(H\)\(\because \angle ABC\)的外角平分线\(BD\)\(\angle ACB\)的外角平分线\(CE\)相交于点\(P\)\(\therefore PF = PG = 5\)\(PG = PH\)\(\therefore PF = PG = PH = 5\)故答案为:5图片 6







第118题

如图在\(\Delta ABC\)中,\(AD\)平分\(\angle BAC\),点\(D\)\(BC\)的中点,\(DE \bot AB\)于点\(E\)\(DF \bot AC\)于点\(F\)。求证:\(\angle B = \angle C\)



参考答案:\(\because AD\)平分\(\angle BAC\),\(DE \bot AB\),\(DF \bot AC\),\(\therefore DE = DF\),\(\angle BED = \angle CFD = 90^\circ \),\(\because D\)是\(BC\)的中点,\(\therefore BD = CD\)在\({\rm{Rt}}\Delta {\rm{BDE}}\)和\({\rm{Rt}}\Delta {\rm{CDF}}\)中\(\because DE = DF\),\(DB = DC\),\(\therefore {\rm{Rt}}\Delta {\rm{BDE}} \cong {\rm{Rt}}\Delta {\rm{CDF}}({\rm{HL}})\)\(\therefore \angle B = \angle C\)。




进入题库练习及模拟考试