“微信扫一扫”进入考试题库练习及模拟考试

初中数学八年级上册试题库(555题)










第49题

AGF的度数;



参考答案:60°


第50题

EAD的度数。

图片 13



参考答案:20°(1)\(\because \angle B = 40^\circ \),\(\angle ACB = 80^\circ \),\(\therefore \angle BAC = 180^\circ - 40^\circ - 80^\circ = 60^\circ \),\(\because AE\)是\(\Delta ABC\)的角平分线,\(\therefore \angle BAE = \frac{1}{2}\angle BAC = 30^\circ \),\(\because FG \bot AE\),\(\therefore \angle AHG = 90^\circ \),\(\therefore \angle AGF = 180^\circ - 90^\circ - 30^\circ = 60^\circ \);(2)\(\because AD\)是\(\Delta ABC\)的高,\(\therefore \angle ADC = 90^\circ \),\(\because \angle ACB = 80^\circ \),\(\therefore \angle CAD = 180^\circ - 90^\circ - 80^\circ = 10^\circ \),\(\because \angle BAC = 60^\circ \),\(AE\)是\(\Delta ABC\)的角平分线,\(\therefore \angle CAE = \frac{1}{2}\angle BAC = 30^\circ \),\(\therefore \angle EAD = \angle CAE - \angle CAD = 30^\circ - 10^\circ = 20^\circ \).



第52题

如图2,若ABC=αBDA=β,求FAD+C的度数(用含αβ的代数式表示)。

图片 10图片 11



参考答案:

β-0.2α

(1)\(\because EF//BC\)\(\angle BEF = 120^\circ \)

\(\therefore \angle EBC = 60^\circ \)\(\angle AEF = 60^\circ \)

\(\because BD\)平分\(\angle EBC\)

\(\therefore \angle EBD = \angle BDE = \angle DBC = 30^\circ \)

\(\because \angle BDA = 90^\circ \)

\(\therefore \angle EDA = 60^\circ \)

\(\therefore \angle BAD = 60^\circ \)

(2)如图2,过点\(A\)\(AG//BC\)

\(\angle BDA = \angle DBC + \angle DAG = \angle DBC + \angle FAD + \angle FAG = \angle DBC + \angle FAD + \angle C = \beta \)

\(\angle FAD + \angle C = \beta - \angle DBC = \beta - \frac{1}{2}\angle ABC = \beta - \frac{1}{2}\alpha \)



第54题

如图2,当点FAE的延长线上时,请猜想EFDBC之间的数量关系,并加以证明。

图片 8图片 9



参考答案:\(\angle EFD = \frac{1}{2}(\angle C - \angle B)\)(1)\(\because AE\)平分\(\angle BAC\),\(\therefore \)\(\angle BAE = \frac{1}{2}\angle BAC = \frac{1}{2}(180^\circ - \angle B - \angle C) = 90^\circ - \frac{1}{2}(\angle B + \angle C)\),\(\because \angle FEC = \angle B + \angle BAE\),则\(\angle FEC = \angle B + 90^\circ - \frac{1}{2}(\angle B + \angle C) = 90^\circ + \frac{1}{2}(\angle B - \angle C)\),\(\because FD \bot EC\),\(\therefore \angle EFD = 90^\circ - \angle FEC\),则\(\angle EFD = 90^\circ - [90^\circ + 2(\angle B - \angle C)] = \frac{1}{2}(\angle C - \angle B)\),\(\because \angle B = 40^\circ \),\(\angle C = 60^\circ \),\(\therefore \angle EFD = \frac{1}{2}(60 - 40) = 10^\circ \);(2)猜想:\(\angle EFD = \frac{1}{2}(\angle C - \angle B)\).证明:同(1)可证:\(\angle AEC = 90^\circ + \frac{1}{2}(\angle B - \angle C)\),\(\therefore \angle DEF = \angle AEC = 90^\circ + 2(\angle B - \angle C)\),\(\therefore \)\(\angle EFD = 90^\circ - [90^\circ + \frac{1}{2}(\angle B - \angle C)] = \frac{1}{2}(\angle C - \angle B)\).


第55题

六边形共有几条对角线(  )


A.6

B.7

C.8

D.9


参考答案:D


第56题

如图所示的图形中,属于多边形的有(    )


A.2个

B.3个

C.4个

D.5个


参考答案:B


第57题

下列长度的三条线段与长度为5的线段能组成四边形的是(    )。


A.1,1,1

B.1,1,8

C.1,2,2

D.2,2,3


参考答案:D




第60题

一个多边形的外角和是内角和的\(\frac{2}{7}\),这个多边形是(    )。


A.七边形

B.八边形

C.九边形

D.十边形


参考答案:C


进入题库练习及模拟考试