“微信扫一扫”进入题库练习及模拟考试
已知在
如图2,当点F在AE的延长线上时,请猜想∠EFD与∠B,∠C之间的数量关系,并加以证明。
参考答案:\(\angle EFD = \frac{1}{2}(\angle C - \angle B)\)(1)\(\because AE\)平分\(\angle BAC\),\(\therefore \)\(\angle BAE = \frac{1}{2}\angle BAC = \frac{1}{2}(180^\circ - \angle B - \angle C) = 90^\circ - \frac{1}{2}(\angle B + \angle C)\),\(\because \angle FEC = \angle B + \angle BAE\),则\(\angle FEC = \angle B + 90^\circ - \frac{1}{2}(\angle B + \angle C) = 90^\circ + \frac{1}{2}(\angle B - \angle C)\),\(\because FD \bot EC\),\(\therefore \angle EFD = 90^\circ - \angle FEC\),则\(\angle EFD = 90^\circ - [90^\circ + 2(\angle B - \angle C)] = \frac{1}{2}(\angle C - \angle B)\),\(\because \angle B = 40^\circ \),\(\angle C = 60^\circ \),\(\therefore \angle EFD = \frac{1}{2}(60 - 40) = 10^\circ \);(2)猜想:\(\angle EFD = \frac{1}{2}(\angle C - \angle B)\).证明:同(1)可证:\(\angle AEC = 90^\circ + \frac{1}{2}(\angle B - \angle C)\),\(\therefore \angle DEF = \angle AEC = 90^\circ + 2(\angle B - \angle C)\),\(\therefore \)\(\angle EFD = 90^\circ - [90^\circ + \frac{1}{2}(\angle B - \angle C)] = \frac{1}{2}(\angle C - \angle B)\).