“微信扫一扫”进入考试题库练习及模拟考试

初中数学八年级下册(648题)


第601题 当\(\angle BAD = 100^\circ \)时,求\(\angle EAF\)的度数。



参考答案:解:
\(\because \)四边形\(ABCD\)是菱形,
\(\therefore AD//BC\),
\(\therefore \angle BAD + \angle B = 180^\circ \),
\(\because \angle BAD = 100^\circ \),
\(\therefore \angle B = 80^\circ \)
\(\because AE \bot BC\),
\(\therefore \angle AEB = 90^\circ \),
\(\therefore \angle BAE = 10^\circ \),
\(\therefore \angle DAF = 10^\circ \),
\(\therefore \angle EAF = \angle BAD - \angle BAE - \angle DAF \)
\(= 100^\circ - 10^\circ - 10^\circ = 80^\circ \)。


第602题

如图,将平行四边形\(ABCD\)的边\(DC\)延长到点\(E\),使\(CE = DC\),连接\(AE\),交\(BC\)于点\(F\),连接\(AC\),\(BE\),若\(\angle AFC = 2\angle D\),求证:四边形\(ABEC\)是矩形。


图片 21



参考答案:证明:
\(\because \)四边形\(ABCD\)是平行四边形,
\(\therefore AB = CD\),
\(AB//CD\),
\(\angle ABC = \angle D\),
\(\because CE = CD\),
\(\therefore AB = CE\),
\(\therefore \)四边形\(ABEC\)是平行四边形,
\(\therefore BC = 2BF\),\(AE = 2AF\),
\(\because \angle AFC \)
\(= \angle ABC + \angle BAE = 2\angle D\),
\(\therefore \angle ABC = \angle BAE\),
\(\therefore AF = BF\),
\(\therefore AE = BC\),
\(\therefore \)四边形\(ABEC\)是矩形。


第603题

如图,在四边形\(ABCD\)中,\(AB = CD\),点\(E\)、\(F\)分别是线段\(AD\)、\(BC\)的中点,\(G\)、\(H\)分别是线段\(BD\)、\(AC\)的中点,顺次连接\(E、G、F、H\)四点,求证:四边形\(EHFG\)是菱形。




参考答案:证明:\(\because \)点\(E\),\(G\)分别是\(AD\),\(BD\)的中点,

\(\therefore EG//AB\),\(EG = \frac{1}{2}AB\)

∵点\(H,F\)分别是\(AC,BC\)的中点,

∴\(HF//AB\),\(HF = \frac{1}{2}AB\)

\(\therefore EG//HF\),\(EG = HF\)

\(\therefore \)四边形\(EHFG\)是平行四边形.

∵点\(H,E\)分别是\(AC,AD\)的中点,

∴\(EH = \frac{1}{2}CD\)

\(\because AB = CD\),

\(\therefore EG = EH\),

\(\therefore \)四边形\(EHFG\)是菱形。



第605题 求证:四边形\(ABCD\)是正方形。



参考答案:

\(AG \bot EF\)\(G\),如图所示:

图片 1

\(\angle AGE = \angle AGF = 90^\circ \)

\(\because AB \bot CE\)\(AD \bot CF\)

\(\therefore \angle B = \angle D = 90^\circ = \angle C\)

\(\therefore \)四边形\(ABCD\)是矩形,

\(\because \angle CEF\)\(\angle CFE\)外角平分线交于点\(A\)

\(\therefore AB = AG\)\(AD = AG\)

\(\therefore AB = AD\)

\(\therefore \)四边形\(ABCD\)是正方形


第606题



参考答案:


证明:  \(EF \bot DE\) \(DG⊥DE,FG⊥EF\)



\(∴∠DEF=∠EDG=∠EFG=90°\)



四边形\(DEFG\)是矩形





如图,作\(EM \bot BC\)\(M\)\(EN \bot CD\)\(N\)



\(\therefore \angle MEN = 90^\circ \)



\(\because \)\(E\)是正方形\(ABCD\)对角线上的点,



\(\therefore EM = EN\)



\(\because \angle DEF = 90^\circ \)



\(\therefore \angle DEN = \angle MEF = 90^\circ - \angle FEN\)



\(\because \angle DNE = \angle FME = 90^\circ \)



\(\Delta DEN\)\(\Delta FEM\)中,



\(\left\{ {\begin{array}{*{20}{l}} {\angle DNE = \angle FME} \\ {EN = EM} \\ {\angle DEN = \angle FEM} \end{array}} \right.\)



\(\therefore \Delta DEN \cong \Delta FEM(ASA)\)



\(\therefore EF = DE\)



\(\because \)四边形\(DEFG\)是矩形,



\(\therefore \)矩形\(DEFG\)是正方形。



第607题

探究:\(CE\)与\(CG\)有怎样的位置关系?请说明理由。


 



参考答案:\(CE \bot CG\),
理由如下:
\(\because \)正方形\(DEFG\)和正方形\(ABCD\),
\(\therefore DE = DG\),\(AD = DC\),
\(\because \angle CDG + \angle CDE \)
\(= \angle ADE + \angle CDE = 90^\circ \),
\(\therefore \angle CDG = \angle ADE\),
在\(\Delta ADE\)和\(\Delta CDG\)中,
\(\left\{ {\begin{array}{*{20}{l}}
{AD = CD} \\
{\angle ADE = \angle CDG} \\
{DE = DG}
\end{array}} \right.\),
\(\therefore \Delta ADE \cong \Delta CDG(SAS)\),
\(\therefore \angle CDA = \angle DCG\),
\(\because \angle ACD + \angle CAD + \angle ADC = 180^\circ \),
\(\angle ADC = 90^\circ \),
\(\therefore \angle ACG = \angle ACD + \angle DCG \)
\(= \angle ACD + \angle CAD = 90^\circ \),
\(\therefore CE \bot CG\)。




第610题


A.\(x = 1\),\(y = 0\)

B.\(x = 2\),\(y = 1\)

C.\(x = 1\),\(y = 3\)

D.\(x = 2\),\(y = 3\)


参考答案:C



第612题


A.\(k < 0\),\(b < 0\)

B.\(k < 0\),\(b > 0\)

C.\(k > 0\),\(b < 0\)

D.\(k > 0\),\(b > 0\)


参考答案:D



第614题 在平面直角坐标系\(xOy\)中,已知点\(A\left ( {-1,2} \right )\),\(B\left ( {3,2} \right )\),若一次函数\(y = - x + b\)的图象与线段\(AB\)有交点,则\(b\)的取值范围是(    )


A.\(b \leqslant - 1\)或\(b \geqslant 3\)

B.\( - 1 \leqslant b \leqslant 3\)

C.\(b \leqslant 1\)或\(b \geqslant 5\)

D.\(1 \leqslant b \leqslant 5\)


参考答案:D








进入题库练习及模拟考试