“微信扫一扫”进入题库练习及模拟考试

初中数学八年级下册(648题)


如图,在四边形\(ABCD\)中,\(AB = CD\),点\(E\)、\(F\)分别是线段\(AD\)、\(BC\)的中点,\(G\)、\(H\)分别是线段\(BD\)、\(AC\)的中点,顺次连接\(E、G、F、H\)四点,求证:四边形\(EHFG\)是菱形。




知识点:复习


参考答案:证明:\(\because \)点\(E\),\(G\)分别是\(AD\),\(BD\)的中点,

\(\therefore EG//AB\),\(EG = \frac{1}{2}AB\)

∵点\(H,F\)分别是\(AC,BC\)的中点,

∴\(HF//AB\),\(HF = \frac{1}{2}AB\)

\(\therefore EG//HF\),\(EG = HF\)

\(\therefore \)四边形\(EHFG\)是平行四边形.

∵点\(H,E\)分别是\(AC,AD\)的中点,

∴\(EH = \frac{1}{2}CD\)

\(\because AB = CD\),

\(\therefore EG = EH\),

\(\therefore \)四边形\(EHFG\)是菱形。

进入考试题库