“微信扫一扫”进入题库练习及模拟考试
如图,在四边形\(ABCD\)中,\(AB = CD\),点\(E\)、\(F\)分别是线段\(AD\)、\(BC\)的中点,\(G\)、\(H\)分别是线段\(BD\)、\(AC\)的中点,顺次连接\(E、G、F、H\)四点,求证:四边形\(EHFG\)是菱形。
参考答案:证明:\(\because \)点\(E\),\(G\)分别是\(AD\),\(BD\)的中点,
\(\therefore EG//AB\),\(EG = \frac{1}{2}AB\)
∵点\(H,F\)分别是\(AC,BC\)的中点,
∴\(HF//AB\),\(HF = \frac{1}{2}AB\)
\(\therefore EG//HF\),\(EG = HF\)
\(\therefore \)四边形\(EHFG\)是平行四边形.
∵点\(H,E\)分别是\(AC,AD\)的中点,
∴\(EH = \frac{1}{2}CD\)
\(\because AB = CD\),
\(\therefore EG = EH\),
\(\therefore \)四边形\(EHFG\)是菱形。