“微信扫一扫”进入题库练习及模拟考试
如图,将平行四边形\(ABCD\)的边\(DC\)延长到点\(E\),使\(CE = DC\),连接\(AE\),交\(BC\)于点\(F\),连接\(AC\),\(BE\),若\(\angle AFC = 2\angle D\),求证:四边形\(ABEC\)是矩形。
参考答案:证明:
\(\because \)四边形\(ABCD\)是平行四边形,
\(\therefore AB = CD\),
\(AB//CD\),
\(\angle ABC = \angle D\),
\(\because CE = CD\),
\(\therefore AB = CE\),
\(\therefore \)四边形\(ABEC\)是平行四边形,
\(\therefore BC = 2BF\),\(AE = 2AF\),
\(\because \angle AFC \)
\(= \angle ABC + \angle BAE = 2\angle D\),
\(\therefore \angle ABC = \angle BAE\),
\(\therefore AF = BF\),
\(\therefore AE = BC\),
\(\therefore \)四边形\(ABEC\)是矩形。