“微信扫一扫”进入题库练习及模拟考试

初中数学八年级下册(648题)


如图,已知四边形\(ABCD\)为正方形,点\(E\)为对角线\(AC\)上一动点,连接\(DE\),过点\(E\)\(EF \bot DE\),交\(BC\)于点\(F\),过点\(D\)\(DG⊥DE\),过点\(F\)\(FG⊥EF\)\(DG\)\(FG\)交于点\(G\),连接\(CG\)


求证:四边形\(DEFG\)是正方形;



知识点:复习


参考答案:


证明:  \(EF \bot DE\) \(DG⊥DE,FG⊥EF\)



\(∴∠DEF=∠EDG=∠EFG=90°\)



四边形\(DEFG\)是矩形





如图,作\(EM \bot BC\)\(M\)\(EN \bot CD\)\(N\)



\(\therefore \angle MEN = 90^\circ \)



\(\because \)\(E\)是正方形\(ABCD\)对角线上的点,



\(\therefore EM = EN\)



\(\because \angle DEF = 90^\circ \)



\(\therefore \angle DEN = \angle MEF = 90^\circ - \angle FEN\)



\(\because \angle DNE = \angle FME = 90^\circ \)



\(\Delta DEN\)\(\Delta FEM\)中,



\(\left\{ {\begin{array}{*{20}{l}} {\angle DNE = \angle FME} \\ {EN = EM} \\ {\angle DEN = \angle FEM} \end{array}} \right.\)



\(\therefore \Delta DEN \cong \Delta FEM(ASA)\)



\(\therefore EF = DE\)



\(\because \)四边形\(DEFG\)是矩形,



\(\therefore \)矩形\(DEFG\)是正方形。


进入考试题库