“微信扫一扫”进入题库练习及模拟考试

初中数学八年级下册(648题)


如图,已知四边形\(ABCD\)为正方形,点\(E\)为对角线\(AC\)上一动点,连接\(DE\),过点\(E\)\(EF \bot DE\),交\(BC\)于点\(F\),过点\(D\)\(DG⊥DE\),过点\(F\)\(FG⊥EF\)\(DG\)\(FG\)交于点\(G\),连接\(CG\)


探究:\(CE\)与\(CG\)有怎样的位置关系?请说明理由。


 



知识点:复习


参考答案:\(CE \bot CG\),
理由如下:
\(\because \)正方形\(DEFG\)和正方形\(ABCD\),
\(\therefore DE = DG\),\(AD = DC\),
\(\because \angle CDG + \angle CDE \)
\(= \angle ADE + \angle CDE = 90^\circ \),
\(\therefore \angle CDG = \angle ADE\),
在\(\Delta ADE\)和\(\Delta CDG\)中,
\(\left\{ {\begin{array}{*{20}{l}}
{AD = CD} \\
{\angle ADE = \angle CDG} \\
{DE = DG}
\end{array}} \right.\),
\(\therefore \Delta ADE \cong \Delta CDG(SAS)\),
\(\therefore \angle CDA = \angle DCG\),
\(\because \angle ACD + \angle CAD + \angle ADC = 180^\circ \),
\(\angle ADC = 90^\circ \),
\(\therefore \angle ACG = \angle ACD + \angle DCG \)
\(= \angle ACD + \angle CAD = 90^\circ \),
\(\therefore CE \bot CG\)。

进入考试题库