“微信扫一扫”进入考试题库练习及模拟考试

初中数学七年级上册(581题)


第241题

\(x - 2y = 3\),则\(2(x - 2y) - x + 2y - 5\)的值是\((\)  \()\)


A.\( - 2\)

B.2

C.4

D.\( - 4\)


参考答案:A




第244题

\((m,1)\)是“相伴数对”,则\(m = \)___;



参考答案:\( - \frac{4}{9}\)




第247题

\(\frac{1}{2}(2{x^2} - 6x - 4) - 4( - 1 + x + \frac{1}{4}{x^2})\),其中\(x = 5\)



参考答案:原式\( = {x^2} - 3x - 2 + 4 - 4x - {x^2}\)\( = - 7x + 2\),当\(x = 5\)时,原式\( = - 7 \times 5 + 2 = - 35 + 2 = - 33\)


第248题

\(\frac{1}{3}{x^2} - (3{x^2} + 3xy - \frac{3}{5}{y^2}) + (\frac{8}{3}{x^2} + 3xy + \frac{2}{5}{y^2})\),其中\(x = - \frac{1}{2}\)\(y = 2\)



参考答案:原式\( = \frac{1}{3}{x^2} - 3{x^2} - 3xy + \frac{3}{5}{y^2} + \frac{8}{3}{x^2} + 3xy + \frac{2}{5}{y^2}\)\( = {y^2}\),当\(y = 2\)时,原式\( = {2^2} = 4\)


第249题

\({(a - b)^2}\)看成一个整体,合并\(3{(a - b)^2} - 6{(a - b)^2} + 2{(a - b)^2}\)



参考答案:\(3{(a - b)^2} - 6{(a - b)^2} + 2{(a - b)^2} = - {(a - b)^2}\)


第250题

已知\({x^2} - 2y = 4\),求\(3{x^2} - 6y - 21\)的值



参考答案:\(\because {x^2} - 2y = 4\),\(\therefore 3{x^2} - 6y = 12\),\(\therefore 3{x^2} - 6y - 21 = 12 - 21 = - 9\);


第251题

已知\(a - 2b = 3\)\(2b - c = - 5\)\(c - d = 10\),求\((a - c) + (2b - d) - (2b - c)\)的值



参考答案:\(\because a - 2b = 3\)①,\(2b - c = - 5\)②,\(c - d = 10\)③,
\(\therefore \)①\( + \)②得,\(a - c = - 2\),②\( + \)③得,\(2b - d = 5\),
\(\therefore (a - c) + (2b - d) - (2b - c)\)\( = - 2 + 5 - ( - 5)\)\( = 8\)


第252题

\(a\)的相反数是它本身,负数\(b\)的绝对值是3,\(c\)是最小的正整数,求代数式\(4a - (2a - 3b + c)\)的值。



参考答案:\(\because a\)的相反数是它本身,负数\(b\)的绝对值是3,\(c\)是最小的正整数,
\(\therefore a = 0\),\(b = - 3\),\(c = 1\),
\(\therefore 4a - (2a - 3b + c)\)
\( = 4a - 2a + 3b - c\)
\( = 2a + 3b - c\)
\( = 2 \times 0 + 3 \times ( - 3) - 1\)
\( = - 10\)


第253题

\(x\)\(y\)是有理数,我们定义新的运算\(*\),使得\(x*y = \frac{{x + 2y}}{{2x - y}}\),求\(( - 2)*( - 3)*5\)的值。



参考答案:原式\( = \frac{{ - 2 + 2 \times ( - 3)}}{{2 \times ( - 2) - ( - 3)}}*5\)
\( = \frac{{ - 2 - 6}}{{ - 4 + 3}}*5\)
\( = 8*5\)
\( = \frac{{8 + 2 \times 5}}{{2 \times 8 - 5}}\)
\( = \frac{{18}}{{11}}\)


第254题

\(2A - 3B\)



参考答案:\(\because A = 3{x^2} + {y^2} - 2xy\),
\(B = xy - {y^2} + 2{x^2}\),
\(\therefore 2A - 3B = 2(3{x^2} + {y^2} - 2xy) - 3(xy - {y^2} + 2{x^2})\)
\( = 6{x^2} + 2{y^2} - 4xy - 3xy + 3{y^2} - 6{x^2}\)
\( = 5{y^2} - 7xy\)


第255题

\(|2x - 3| = 1\)\({y^2} = 16\)\(|x - y| = y - x\),求\(2A - 3B\)的值



参考答案:\(\because |2x - 3| = 1\),\({y^2} = 16\),
\(\therefore {x_1} = 1\),\({x_2} = 2\),\(y = \pm 4\),
又\(\because |x - y| = y - x\),即\(x⩽y\),
\(\therefore x = 1\),\(y = 4\)或\(x = 2\),\(y = 4\),
当\(x = 1\),\(y = 4\)时,\(2A - 3B = 5{y^2} - 7xy = 80 - 28 = 52\),
当\(x = 2\),\(y = 4\)时,\(2A - 3B = 5{y^2} - 7xy = 80 - 56 = 24\),
\(\therefore 2A - 3B\)的值为52或24


第256题

\(x = 4\)\(y = - 8\)时,代数式\(a{x^3} + \frac{1}{2}by + 5 = 18\),那么\(x = - 128\)\(y = - 1\)时,求代数式\(3ax - 24b{y^3} + 10\)的值



参考答案:将\(x = 4\),\(y = - 8\)代入代数式\(a{x^3} + \frac{1}{2}by + 5 = 18\)可得,
\(64a - 4b + 5 = 18\),即,\(64a - 4b = 13\),
把\(x = - 128\),\(y = - 1\)代入\(3ax - 24b{y^3} + 10\)可得,
\( - 3 \times 128a + 24b + 10 = - 6(64a - 4b) + 10 = - 6 \times 13 + 10 = - 68\)


第257题

\(m = - 3\),则代数式\(\frac{1}{3}{m^2} + 1\)的值为___



参考答案:4


解析:

\(m = - 3\)\(\frac{1}{3}{m^2} + 1 = \frac{1}{3} \times 9 + 1 = 4\)



\(m + n = - 3\)\(\frac{{{{(m + n)}^2}}}{3} + 1 = 3 + 1 = 4\)


第258题

\(m + n = - 3\),则代数式\(\frac{{{{(m + n)}^2}}}{3} + 1\)的值为___



参考答案:4


解析:

\(m = - 3\)\(\frac{1}{3}{m^2} + 1 = \frac{1}{3} \times 9 + 1 = 4\)



\(m + n = - 3\)\(\frac{{{{(m + n)}^2}}}{3} + 1 = 3 + 1 = 4\)


第259题

\(5m - 3n = - 4\),请你仿照以上求代数式值的方法求出\(2(m - n) - 4(n - 2m) + 2\)的值。



参考答案:\(2(m - n) - 4(n - 2m) + 2 = 2m - 2n - 4n + 8m + 2 = 10m - 6n + 2 = 2(5m - 3n) + 2\)

\(\because 5m - 3n = - 4\),

\(\therefore \)原式\( = - 8 + 2 = - 6\)


解析:

\(m = - 3\)\(\frac{1}{3}{m^2} + 1 = \frac{1}{3} \times 9 + 1 = 4\)



\(m + n = - 3\)\(\frac{{{{(m + n)}^2}}}{3} + 1 = 3 + 1 = 4\)


第260题

\(5m - 3n = - 4\)时,求代数式\(2(m - n) + 4(2m - n) + 2\)的值。



参考答案:原式\( = 2m - 2n + 8m - 4n + 2 = 10m - 6n + 2 = 2(5m - 3n) + 2\),
当\(5m - 3n = - 4\)时,
原式\( = - 8 + 2 = - 6\)


进入题库练习及模拟考试