“微信扫一扫”进入考试题库练习及模拟考试

初中数学七年级上册(581题)


第221题

若多项式\(m{x^2} + 3xy - 2{y^2} - {x^2} + nxy - 2y + 6\)的值与\(x\)的取值无关,求\({(m + n)^3}\)的值。



参考答案:原式\( = (m - 1){x^2} + (3 + n)xy - 2{y^2} - 2y + 6\)
\(\because \)原式的值与\(x\)的值无关
\(\therefore m - 1 = 0\),
\(3 + n = 0\)
\(\therefore m = 1\),
\(n = - 3\)
\(\therefore {(m + n)^3} = {(1 - 3)^3} = - 8\)


第222题

若关于\(x\)\(y\)的多项式\(6m{x^2} + 4nxy + 2x + 2xy - {x^2} + y + 4\)不含二次项,\(m - n\)的值。



参考答案:原式\( = (6m - 1){x^2} + (4n + 2)xy + 2x + y + 4\)
\(\because \)多项式不含二次项
\(\therefore 6m - 1 = 0\),
\(4n + 2 = 0\)
\(\therefore \)\(m = \frac{1}{6},n = - \frac{1}{2}\)
\(\therefore \)\(m - n = \frac{1}{6} - ( - \frac{1}{2}) = \frac{2}{3}\)


第223题

\(2{x^{|k| + 1}}{y^2} + (k - 1){x^2}y + 1\)是关于\(x\)\(y\)的四次三项式,求\(k\)值。



参考答案:由题意得:
\(|k| + 1 + 2 = 4\)
\(\therefore k = \pm 1\)
又\(\because k - 1 \ne 0\)
\(\therefore k \ne 1\)
\(\therefore k = - 1\)


第224题

不改变式子\(a - (2b - c)\)的值,把式子中括号前“\( - \)”变成“\( + \)”结果应是\((\)  \()\)


A.\(a + ( - 2b - c)\)

B.\(a + ( - 2b + c)\)

C.\(a + (2b + c)\)

D.\(a + (2b - c)\)


参考答案:B


第225题

下列各式中,不能由\(m - n + c\)通过变形得到的是\((\)  \()\)


A.\(m - (n - c)\)

B.\(c - (n - m)\)

C.\(m - (n + c)\)

D.\((m - n) + c\)


参考答案:C


第226题

下列各式中,去括号或添括号正确的是\((\)  \()\)


A.\({a^2} - (2a - b + c) = {a^2} - 2a - b + c\)

B.\( - 2x - t - a + 1 = - (2x - t) + (a - 1)\)

C.\(3x - [5x - (2x - 1)] = 3x - 5x - 2x + 1\)

D.\(a - 3x + 2y - 1 = a + ( - 3x + 2y - 1)\)


参考答案:D


第227题

\((a + 1) - ( - b + c)\)去括号,应该等于\((\)  \()\)


A.\(a + 1 - b - c\)

B.\(a + 1 - b + c\)

C.\(a + 1 + b + c\)

D.\(a + 1 + b - c\)


参考答案:D


第228题

下列计算正确的是\((\)  \()\)


A.\({m^2}n - 2m{n^2} = - {m^2}n\)

B.\(2x + 3y = 5xy\)

C.\(2(a - 3b) = 2a - 3b\)

D.\( - 3ab - 3ab = - 6ab\)


参考答案:D


第229题

\(M = {x^2} - 3x + 5\)\(N = - {x^2} - 3x + 2\),那么\(M\)\(N\)的大小关系是\((\)  \()\)


A.\(M < N\)

B.\(M = N\)

C.\(M > N\)

D.无法确定


参考答案:C


第230题

已知\(a + b = 3\)\(b - c = 12\),则\(a + 2b - c\)的值为\((\)  \()\)


A.15

B.9

C.\( - 15\)

D.\( - 9\)


参考答案:A







第236题

\(A + B - C\)



参考答案:\(A + B - C = 2{x^2} - 7x + 1 + (3{x^2} + x - 4) - (5{x^2} - 10x - 5)\)
\( = 2{x^2} - 7x + 1 + 3{x^2} + x - 4 - 5{x^2} + 10x + 5\)
\( = 2{x^2} + 3{x^2} - 5{x^2} + ( - 7x + x + 10x) + (1 - 4 + 5)\)
\( = 4x + 2\)


第237题

\(2A - 3B + C\)



参考答案:\(2A - 3B + C\)
\( = 2(2{x^2} - 7x + 1) - 3(3{x^2} + x - 4) + (5{x^2} - 10x - 5)\)
\( = 4{x^2} - 14x + 2 - 9{x^2} - 3x + 12 + 5{x^2} - 10x - 5\)
\( = (4{x^2} - 9{x^2} + 5{x^2}) + ( - 14x - 3x - 10x) + (2 + 12 - 5)\)
\( = - 27x + 9\)





进入题库练习及模拟考试