“微信扫一扫”进入考试题库练习及模拟考试
第101题
对
参考答案:解:面积最小的圆就是以\(AB\)为一条直径的圆,圆心为\(\left( {\frac{4}{5},\frac{3}{5}} \right)\),半径为\(\frac{{3\sqrt 5 }}{5}\),方程是\({\left( {x - \frac{4}{5}} \right)^2} + {\left( {y - \frac{3}{5}} \right)^2} = \frac{9}{5}\).
第102题
求圆
参考答案:设圆的方程为\({x^2} + {y^2} + Dx + Ey + F = 0\).\(\therefore \begin{cases}
2D + 5E + F = - 29 \\
5D + 2E + F = - 29 \\
2D - E + F = - 5 \\
\end{cases}\),解得\(\begin{cases}
D = - 4 \\
E = - 4 \\
F = - 1 \\
\end{cases}\),\(\therefore {x^2} + y{}^2 - 4x - 4y - 1 = 0\)即\({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 9\).
解析:
参考答案:\({(x+2{)}^{2}}+{(y+1{)}^{2}}\)可看作点\(P\left( {x,y} \right)\)与点\(\left( { - 2, - 1} \right)\)距离的平方,
圆心\(C\left( {2,2} \right)\)与点\(\left( { - 2, - 1} \right)\)的距离\(d = \sqrt {{{\left( {2 + 2} \right)}^2} + {{\left( {2 + 1} \right)}^2}} = 5 > 3\),
则点\(\left( { - 2, - 1} \right)\)在圆\( C\)外,
故点\(\left( { - 2, - 1} \right)\)到圆\( C\)上点的距离最大值为\(d + R = 8\),距离最小值为\(d - R = 2\).
所以,\({(x + 2)^2} + {(y + 1)^2}\)的最大值为\( 64\),最小值为\( 4\).
解析:
第104题
求顶点\(A\)和\(B\)的坐标;
参考答案:由\(\left \{ \begin{gathered} {y=-2x+11} \\ {x+3y+2=0} \end{gathered} \right .\)
可得\(\left \{ \begin{gathered} {x=7} \\ {y=-3} \end{gathered} \right .\),
所以点\(B\)的坐标为\((7,-3)\),由\(x+3y+2=0\)
可得\(y=-\frac {1} {3}x-\frac {2} {3}\),
所以\({k}_{BH}=-\frac {1} {3}\) 由\(AC\bot BH\),
可得\({k}_{AC}=3\),
因为\(C(2,-8)\),
所以直线\(AC\)的方程为:\(y+8=3(x-2)\),
即\(3x-y-14=0\),
由\(\left \{ \begin{gathered} {y=-2x+11} \\ {3x-y-14=0} \end{gathered} \right .\)
可得\(\left \{ \begin{gathered} {x=5} \\ {y=1} \end{gathered} \right .\),
所以点\(A\)的坐标为\((5,1)\).
第105题
求
参考答案:设\(\vartriangle ABC\)的外接圆方程为\({x}^{2}+{y}^{2}+Dx+Ey+F=0\),将\(A(5,1)\),
\(B(7,-3)\)和\(C(2,-8)\)三点的坐标分别代入圆的方程可得:
\(\left \{ \begin{gathered} {5D+E+F+26=0} \\ {7D-3E+F+58=0} \\ {2D-8E+F+68=0} \end{gathered} \right .\),
解得:
\(\left \{ \begin{gathered} {D=-4} \\ {E=6} \\ {F=-12} \end{gathered} \right .\),
所以\(\vartriangle ABC\)的外接圆的一般方程为\({x}^{2}+{y}^{2}-4x+6y-12=0\).
第111题
已知直线
A.\(\frac {5} {2}\)
B.\(\frac {3} {2}\)
C.\(\frac {1} {2}\)
D.5
参考答案:A
第113题
点
A.\(\sqrt {2}\)
B.\(\frac {\sqrt {2}} {2}\)
C.\(\frac {3\sqrt {2}} {2}\)
D.1
参考答案:B
第114题
若点
A.\(2x-y-1=0\)
B.\(x-2y+1=0\)
C.\(x+2y-3=0\)
D.\(2x+y-3=0\)
参考答案:B
参考答案:\(x=1\),\(x + \sqrt 3 y - 4 = 0\)
解析:
第116题
与圆\({x}^{2}+(y-2{)}^{2}=2\)相切,且在两坐标轴上的截距相等的直线方程为( )
A.\(x+y=0\)
B.\(x-y=0\)
C.\(x-y-4=0\)
D.\(x+y-4=0\)
参考答案:ABD
第117题
已知直线
参考答案:\((6,10]\)
A.0
B.2
C.4
D.6
参考答案:BC