“微信扫一扫”进入考试题库练习及模拟考试
第81题
圆心为
A.\({x^2} + {y^2} + 2x - 2y + 1 = 0\)
B.\({x^2} + {y^2} - 2x + 2y + 1 = 0\)
C.\({x^2} + {y^2} + 2x - 2y = 0\)
D.\({x^2} + {y^2} - 2x + 2y = 0\)
参考答案:D
第82题
已知
A.1或-2
B.2或-1
C.-1
D.2
参考答案:C
第83题
已知圆的方程是
A.\((1,0)\)与5
B.\((1,0)\)与\(\sqrt {5}\)
C.\((-1,0)\)与5
D.\((-1,0)\)与\(\sqrt {5}\)
参考答案:B
A.\( \sqrt{7}\)
B.\( 4\)
C.\( 6\)
D.\( 3\)
参考答案:B
第85题
已知点
A.\({\left( {x - \frac{3}{2}} \right)^2} + {\left( {y - \frac{1}{2}} \right)^2} = 1\)
B.\({\left( {x + \frac{3}{2}} \right)^2} + {\left( {y - \frac{1}{2}} \right)^2} = 1\)
C.\({\left( {x{\rm{ - }}\frac{3}{2}} \right)^2} + {\left( {y{\rm{ + }}\frac{1}{2}} \right)^2} = 1\)
D.\({\left( {x + \frac{3}{2}} \right)^2} + {\left( {y{\rm{ + }}\frac{1}{2}} \right)^2} = 1\)
参考答案:B
A.-1
B.1
C.2
D.-2
参考答案:C
A.4
B.5
C.\(3\sqrt 2 - 1\)
D.\(2\sqrt 6 \)
参考答案:A
第88题
已知圆
A.点\(C\)的坐标为\(\left( {2,7} \right)\)
B.点\(Q\)在圆\(C\)外
C.若点\(P\left( {m,m + 1} \right)\)在圆\(C\)上,则直线\(PQ\)的斜率为\(\frac{1}{4}\)
D.若\(M\)是圆\(C\)上任一点,则\(\left| {MQ} \right|\)的取值范围为\(\left[ {2\sqrt 2 ,6\sqrt 2 } \right]\)
参考答案:ABD
第89题
关于
A.若方程表示圆,则实数\( m\)的取值范围为\(m < \frac{1}{4}\)
B.若方程表示圆,则所表示的圆的圆心一定在直线\(y = 1\)上
C.若方程不表示任何图形,则\( - \frac{1}{4} < m < 1\)
D.若方程表示圆,且该圆与\( x\)轴的两个交点位于原点的两侧,则\(m < 0\)
参考答案:BD
第90题
若圆C与圆
A.\({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} = 1\)
B.\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 1\)
C.\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 1\)
D.\({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = 1\)
参考答案:A
参考答案:\({\left( {x - 3} \right)^2} + {\left( {y + 4} \right)^2} = 25\)
第92题
已知方程
参考答案:\((-1,-1)\);\((-\infty ,2)\)
第93题
已知曲线
参考答案:\(\left( {1,0} \right)\)
参考答案:\(\left( { - 1,0} \right)\)
参考答案:\({\left( {x - 1} \right)^2} + {y^2} = 2\)
参考答案:\({x^2} + {\left( {y + 1} \right)^2} = 1\)
参考答案:由题意得:圆心\(C\left( { - \frac{D}{2}, - \frac{E}{2}} \right)\),
因为圆心在直线\(x + y - 1 = 0\)上,所以\( - \frac{D}{2} - \frac{E}{2} - 1 = 0\),即\(D + E = - 2\),①又半径\(r = \frac{{\sqrt {{D^2} + {E^2} - 12} }}{2} = \sqrt 2 \),所以\({D^2} + {E^2} = 20\),②由①②可得\(\begin{cases} D = 2, \\ E = - 4, \\ \end{cases}\)或\(\begin{cases} D = - 2, \\ E = 4. \\ \end{cases}\)
又圆心在第二象限,所以\( - \frac{D}{2} < 0\),\( - \frac{E}{2} > 0\),即\(D > 0,E < 0\).所以\(\begin{cases} D = 2, \\ E = - 4, \\ \end{cases}\)所以圆一般方程为的\({x^2} + {y^2} + 2x - 4y + 3 = 0\)
参考答案:\({\left( {x - \frac{5}{3}} \right)^2} + {y^2} = \frac{{16}}{9}\)
第99题
证明对任意实数
参考答案:证明:分离参数\(a\),化为\({x^2} + {y^2} + 2y - 4 + a\left( { - 2x - 4y + 4} \right) = 0\),又\(\begin{cases}
{x^2} + {y^2} + 2y - 4 = 0 \\
- 2x - 4y{\rm{ + }}4{\rm{ = }}0 \\
\end{cases}\),得:\(\begin{cases}
x = 2 \\
y = 0 \\
\end{cases}\)或\(\begin{cases}
x = - \frac{2}{5} \\
y = \frac{6}{5} \\
\end{cases}\),\( \therefore \)对任何实数\(a\),圆\( C\)必过点\(A\left( {2,0} \right)\)、\(B\left( { - \frac{2}{5},\frac{6}{5}} \right)\).
第100题
求圆心
参考答案:解:\(\because {D^2} + {E^2} - 4F = 4\left( {5{a^2} - 8a + 5} \right) > 0\)恒成立,设\(C\)的坐标为\(\left( {x,y} \right)\),则圆心\(C\)的方程为\(\begin{cases}
x = a, \\
y = 2a - 1, \\
\end{cases}\)消去\(a\),得\(2x - y - 1 = 0\),圆心\(C\)的轨迹方程为\(2x - y - 1 = 0\).