“微信扫一扫”进入考试题库练习及模拟考试

高中数学选择性必修 第一册(264题)



第62题


A.\( \sqrt{2}\)

B.\( \frac{\sqrt{2}}{2}\)

C.2

D.\( 2\sqrt{2}\)


参考答案:A



第64题



参考答案:\( -\frac{2}{3}\)


第65题



参考答案:\( \frac{6\sqrt{5}}{5}\)


第66题


A.\({\left( {x + 3} \right)^2} + {\left( {y - 4} \right)^2} = 16\)

B.\({\left( {x + 3} \right)^2} + {\left( {y + 4} \right)^2} = 16\)

C.\({\left( {x + 3} \right)^2} + {\left( {y - 4} \right)^2} = 9\)

D.\({\left( {x + 3} \right)^2} + {\left( {y + 4} \right)^2} = 9\)


参考答案:C


第67题


A.\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 5\)

B.\({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} = 5\)

C.\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 20\)

D.\({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} = 20\)


参考答案:B


第68题


A.圆\({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 5\)的圆心为\(\left( {1,2} \right)\),半径为5

B.圆\({\left( {x + 2} \right)^2} + {y^2} = {b^2}\left( {b \ne 0} \right)\)的圆心为\(\left( { - 2,0} \right)\),半径为\(b\)

C.圆\({x^2} + {y^2} = 3\)的圆心为\(\left( {0,0} \right)\),半径为\(\sqrt 3 \)

D.方程\({\left( {x + 2} \right)^2} + {\left( {y + 2} \right)^2} = m\)表示圆


参考答案:ABD


第69题


A.\({x^2} + {\left( {y - 3} \right)^2} = 25\)

B.\({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 10\)

C.\({\left( {x - 3} \right)^2} + {\left( {y - 3} \right)^2} = 10\)

D.\({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 58\)


参考答案:C






第74题


A.\((-3,2)\)

B.\((3,2)\)

C.\((1,4)\)

D.\((1,1)\)


参考答案:BC



第76题



参考答案:法一:由已知,得圆心在经过点\( P\left(\mathrm{4,0}\right)\)且与\(y = 2x - 8\)垂直的直线\(y = - \frac{1}{2}x + 2\)上,它又在线段\( OP\)的中垂线\(x = 2\)上,所以求得圆心\(C\left( {2,1} \right)\),半径为\(\sqrt 5 \).所以圆\( C\)的方程为\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 5\).法二:设圆\( C\)的方程为\({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2}\),可得\(\begin{cases}
{a^2}{\rm{ + }}{b^2} = {r^2} \\
\frac{b}{{a - 4}} = - \frac{1}{2} \\
{\left( {a - 4} \right)^2} + {b^2} = {r^2} \\
\end{cases}\),解得\(\begin{cases}
a = 2 \\
b = 1 \\
r = \sqrt 5 \\
\end{cases}\),所以圆\( C\)的方程为\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 5\).


第77题



参考答案:能.理由如下:设过\(A\left( {0,1} \right),B\left( {2,1} \right),C\left( {3,4} \right)\)的圆的方程为\({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2}\).将\( A\),\( B\),\( C\)三点的坐标分别代入有\(\begin{cases}
{a^2} + {\left( {1 - b} \right)^2} = {r^2} \\
{\left( {2 - a} \right)^2} + {\left( {1 - b} \right)^2} = {r^2} \\
{\left( {3 - a} \right)^2} + {\left( {4 - b} \right)^2} = {r^2} \\
\end{cases},\)解得:\(\begin{cases}
a = 1 \\
b = 3 \\
r = \sqrt 5 \\
\end{cases}.\)\( \mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\)即圆的方程为\({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 5.\)将\(D\left( { - 1,2} \right)\)代入上式圆的方程,得\({\left( { - 1 - 1} \right)^2} + {\left( {2 - 3} \right)^2} = 5.\)即\( D\)点坐标适合此圆的方程.故\(A,B,C,D\)四点在同一个圆上.


第78题



参考答案:\(B\left( {16,0} \right),C\left( {0,8} \right)\),
设圆心\(\left( {0,b} \right)\),
圆的方程为:\({x}^{2}+(y-b{)}^{2}={r}^{2}\),
由圆过点\(B\)、\(C\)可得\(\left \{ \begin{gathered} {(8-b{)}^{2}={r}^{2}} \\ {256+{b}^{2}={r}^{2}} \end{gathered} \right .\),
解得\(b=-12\),\(r=20\).
∴拱桥所在的圆方程是:\({x}^{2}+(y+12{)}^{2}=400\)


解析:


 



 


第79题



参考答案:可设船右上角竖直方向0.5米处点为\(p(4,7.5)\),代入圆方程左端得396.25<400,所以点\(P\)在圆内,故船可以通过.


解析:


 



 


第80题


A.一条射线

B.一个圆

C.两条射线

D.半个圆


参考答案:D


进入题库练习及模拟考试