“微信扫一扫”进入考试题库练习及模拟考试
第62题
已知直线
A.\( \sqrt{2}\)
B.\( \frac{\sqrt{2}}{2}\)
C.2
D.\( 2\sqrt{2}\)
参考答案:A
A.\({\left( {x + 3} \right)^2} + {\left( {y - 4} \right)^2} = 16\)
B.\({\left( {x + 3} \right)^2} + {\left( {y + 4} \right)^2} = 16\)
C.\({\left( {x + 3} \right)^2} + {\left( {y - 4} \right)^2} = 9\)
D.\({\left( {x + 3} \right)^2} + {\left( {y + 4} \right)^2} = 9\)
参考答案:C
第67题
已知点
A.\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 5\)
B.\({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} = 5\)
C.\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 20\)
D.\({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} = 20\)
参考答案:B
第68题
下列说法错误的是( )
A.圆\({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 5\)的圆心为\(\left( {1,2} \right)\),半径为5
B.圆\({\left( {x + 2} \right)^2} + {y^2} = {b^2}\left( {b \ne 0} \right)\)的圆心为\(\left( { - 2,0} \right)\),半径为\(b\)
C.圆\({x^2} + {y^2} = 3\)的圆心为\(\left( {0,0} \right)\),半径为\(\sqrt 3 \)
D.方程\({\left( {x + 2} \right)^2} + {\left( {y + 2} \right)^2} = m\)表示圆
参考答案:ABD
A.\({x^2} + {\left( {y - 3} \right)^2} = 25\)
B.\({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 10\)
C.\({\left( {x - 3} \right)^2} + {\left( {y - 3} \right)^2} = 10\)
D.\({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 58\)
参考答案:C
第71题
若圆的方程为
参考答案:\(\left( {0,{\rm{ - }}1} \right)\);1
第72题
若原点在圆
A.\(m > 25\)
B.\(m > 5\)
C.\(0 < m < 25\)
D.\(0 < m < 5\)
参考答案:C
参考答案:\({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} = 5\)
第74题
已知圆的方程是
A.\((-3,2)\)
B.\((3,2)\)
C.\((1,4)\)
D.\((1,1)\)
参考答案:BC
第75题
一圆与圆C:
参考答案:\({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 8\)
参考答案:法一:由已知,得圆心在经过点\( P\left(\mathrm{4,0}\right)\)且与\(y = 2x - 8\)垂直的直线\(y = - \frac{1}{2}x + 2\)上,它又在线段\( OP\)的中垂线\(x = 2\)上,所以求得圆心\(C\left( {2,1} \right)\),半径为\(\sqrt 5 \).所以圆\( C\)的方程为\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 5\).法二:设圆\( C\)的方程为\({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2}\),可得\(\begin{cases}
{a^2}{\rm{ + }}{b^2} = {r^2} \\
\frac{b}{{a - 4}} = - \frac{1}{2} \\
{\left( {a - 4} \right)^2} + {b^2} = {r^2} \\
\end{cases}\),解得\(\begin{cases}
a = 2 \\
b = 1 \\
r = \sqrt 5 \\
\end{cases}\),所以圆\( C\)的方程为\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 5\).
参考答案:能.理由如下:设过\(A\left( {0,1} \right),B\left( {2,1} \right),C\left( {3,4} \right)\)的圆的方程为\({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2}\).将\( A\),\( B\),\( C\)三点的坐标分别代入有\(\begin{cases}
{a^2} + {\left( {1 - b} \right)^2} = {r^2} \\
{\left( {2 - a} \right)^2} + {\left( {1 - b} \right)^2} = {r^2} \\
{\left( {3 - a} \right)^2} + {\left( {4 - b} \right)^2} = {r^2} \\
\end{cases},\)解得:\(\begin{cases}
a = 1 \\
b = 3 \\
r = \sqrt 5 \\
\end{cases}.\)\( \mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\)即圆的方程为\({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 5.\)将\(D\left( { - 1,2} \right)\)代入上式圆的方程,得\({\left( { - 1 - 1} \right)^2} + {\left( {2 - 3} \right)^2} = 5.\)即\( D\)点坐标适合此圆的方程.故\(A,B,C,D\)四点在同一个圆上.
第78题
如果以跨度
参考答案:\(B\left( {16,0} \right),C\left( {0,8} \right)\),
设圆心\(\left( {0,b} \right)\),
圆的方程为:\({x}^{2}+(y-b{)}^{2}={r}^{2}\),
由圆过点\(B\)、\(C\)可得\(\left \{ \begin{gathered} {(8-b{)}^{2}={r}^{2}} \\ {256+{b}^{2}={r}^{2}} \end{gathered} \right .\),
解得\(b=-12\),\(r=20\).
∴拱桥所在的圆方程是:\({x}^{2}+(y+12{)}^{2}=400\)
解析:
第79题
现有游船船宽8米,船舱顶部为长方形,船顶离水面7米,为保证安全,要求行船顶部与拱桥顶部的竖直方向高度差至少要0.5米.问这条船能否顺利通过这座拱桥,并说出理由.
参考答案:可设船右上角竖直方向0.5米处点为\(p(4,7.5)\),代入圆方程左端得396.25<400,所以点\(P\)在圆内,故船可以通过.
解析: