“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第一册(264题)


已知圆\( C\)经过原点\(O\left( {0,0} \right)\)且与直线\(y = 2x - 8\)相切于点\(P\left( {4,0} \right)\)\(\),求圆\( C\)的方程.



知识点:第二章 直线和圆的方程


参考答案:法一:由已知,得圆心在经过点\( P\left(\mathrm{4,0}\right)\)且与\(y = 2x - 8\)垂直的直线\(y = - \frac{1}{2}x + 2\)上,它又在线段\( OP\)的中垂线\(x = 2\)上,所以求得圆心\(C\left( {2,1} \right)\),半径为\(\sqrt 5 \).所以圆\( C\)的方程为\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 5\).法二:设圆\( C\)的方程为\({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2}\),可得\(\begin{cases}
{a^2}{\rm{ + }}{b^2} = {r^2} \\
\frac{b}{{a - 4}} = - \frac{1}{2} \\
{\left( {a - 4} \right)^2} + {b^2} = {r^2} \\
\end{cases}\),解得\(\begin{cases}
a = 2 \\
b = 1 \\
r = \sqrt 5 \\
\end{cases}\),所以圆\( C\)的方程为\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 5\).

进入考试题库