“微信扫一扫”进入考试题库练习及模拟考试
求证:无论
参考答案:原式=\( {\left(a-3\right)}^{2}+{\left(b-5\right)}^{2}+6\),所以原式的值都大于0。
A.\( {\left(x+2\right)}^{2}={x}^{2}+2x+4\)
B.\( \left(-3-x\right)\left(3+x\right)=-{x}^{2}-9+6x\)
C.\( \left(-3-x\right)\left(3+x\right)=9-{x}^{2}\)
D.\( {\left(2x-3y\right)}^{2}=4{x}^{2}+9{y}^{2}-12xy\)
参考答案:D
A.\( {x}^{2}-x+\frac{1}{4}\)
B.\( {x}^{2}-2x-1\)
C.\( {a}^{2}+ab+{b}^{2}\)
D.\( 1+2{x}^{2}+4x\)
参考答案:A
化简求值:
参考答案:-12
A.\({x}^{2}+{x}^{3}={x}^{5}\)
B.\({x}^{2}\times {x}^{3}={x}^{6}\)
C.\({(x}^{2}{)}^{3}={x}^{5}\)
D.\({x}^{5}\div {x}^{3}={x}^{2}\)
参考答案:D
参考答案:整式有\( \frac{x}{2},\frac{x-y}{3},\frac{{x}^{2}-{y}^{2}}{-2},\frac{x-2}{\pi }\); 分式有\( \frac{2}{x},\frac{{x}^{2}+2x+1}{{x}^{2}-2x+1},\frac{x-y}{x+y},\frac{3}{x-y}\)。
参考答案:要使分式\( \frac{x+3}{2x-7}\)分式值为0,则分子\( x+3=0\)且分母\( 2x-7\ne 0\),即\( x=-3\)
参考答案:要使分式\( \frac{{x}^{2}+2x+1}{{x}^{2}-2x+1}\)分式值为0,则分子\( {x}^{2}+2x+1=0\)且分母\( {x}^{2}-2x+1\ne 0\),由完全平方公式可得\( {x}^{2}+2x+1=(x+1{)}^{2}=0\),进而\( x=-1\),由完全平方公式可得\( {x}^{2}-2x+1=(x-1{)}^{2}\ne 0\),进而\( x\ne 1\),综上所述:\( x=-1\)
参考答案:要使分式\( \frac{2x}{{x}^{2}+1}\)有意义,则分母\( {x}^{2}+1\ne 0\),即\( x\)取任意实数
参考答案:要使分式\( \frac{x}{\left|x\right|-4}\)有意义,则分母\( \left|x\right|-4\ne 0\),即\( x\ne \pm 4\)