“微信扫一扫”进入题库练习及模拟考试

初中数学八年级上册试题库(555题)


如图,四边形\(ABCD\)中,\(\angle B + \angle D = 180^\circ \)\(\angle BCD = 150^\circ \)\(CB = CD\)\(M\)\(N\)\(AB\)\(AD\)上的两个动点,且\(\angle MCN = 75^\circ \)。求证:\(MN = BM + DN\)





知识点:第十二章 全等三角形


参考答案:见解析


解析:


证明:延长\(AB\)至点\(E\),使得\(BE = DN\),连接\(CE\)



\(\because \)四边形\(ABCD\)中,\(\angle B + \angle D = 180^\circ \)\(\angle ABC + \angle CBE = 180^\circ \)



\(\therefore \angle CBE = \angle CDN\)



\(\Delta CBE\)\(\Delta CDN\)中,



\(\left\{ {\begin{array}{*{20}{l}} {CB = CD} \\\ {\angle CBE = \angle CDN} \\\ {BE = DN} \end{array}} \right.\)



\(\therefore \Delta CBE \cong \Delta CDN(SAS)\)



\(\therefore \angle BCE = \angle DCN\)\(CN = CE\)



\(\because \angle BCD = 150^\circ \)\(\angle MCN = 75^\circ \)



\(\therefore \angle MCE = \angle MCB + \angle BCE = \angle MCB + \angle DCN = 75^\circ \)



\(\therefore \angle MCN = \angle MCE\)



\(\Delta ECM\)\(\Delta NCM\)中,



\(\left\{ {\begin{array}{*{20}{l}} {MC = MC} \\\ {\angle MCN = \angle MCE} \\\ {CN = CE} \end{array}} \right.\)



\(\therefore \Delta ECM \cong \Delta NCM(SAS)\)



\(\therefore MN = ME = BM + BE = BM + DN\)




进入考试题库


To Top