证明:连接\(BC\),如图所示:

\(\because \angle A = \angle D = 90^\circ \),
在\({\rm{Rt}}\Delta {\rm{ABC}}\)和\({\rm{Rt}}\Delta {\rm{DCB}}\)中,
\(\left\{ {\begin{array}{*{20}{l}}
{AC = BD} \\
{BC = CB}
\end{array}} \right.\),
\(\therefore {\rm{Rt}}\Delta ABC \cong {\rm{Rt}}\Delta DCB(HL)\),
\(\therefore AB = DC\),
在\(\Delta ABE\)和\(\Delta DCE\)中,
\(\left\{ {\begin{array}{*{20}{l}}
\begin{gathered}
\angle A = \angle D \\
\angle AEB = \angle DEC \\
\end{gathered} \\
{AB = DC}
\end{array}} \right.\),
\(\therefore \Delta ABE \cong \Delta DCE(AAS)\),
\(\therefore BE = CE\)。
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2022/7/17 15:34:21;用户:邓芸;邮箱:syxx019@xyh.com;学号:21059015