证明:(1)延长\(BD\)交\(AC\)于\(E\),

在\(\Delta ABE\)中,有\(AB + AE > BE\),
在\(\Delta EDC\)中,有\(ED + EC > CD\),
\(\therefore AB + AE + ED + EC > BE + CD\),
\(\because AE + EC = AC\),\(BE = BD + DE\),
\(\therefore AB + AC + ED > BD + DE + CD\),
\(\therefore AB + AC > BD + CD\);
(2)由(1)同理可得:
\(AB + BC > AD + CD\),
\(BC + AC > BD + AD\),
\(AB + AC > BD + CD\),
\(\therefore 2(AB + BC + AC) > 2(AD + BD + CD)\),
\(\therefore AB + BC + AC > AD + BD + CD\).