解:(1)\(\because \)\(f(1) = 1 - \frac{1}{2}\),\(f(2) = 1 - \frac{1}{3}\),\(f(3) = 1 - \frac{1}{4}\),\(f(4) = 1 - \frac{1}{5}\),\( \ldots \)
\(\therefore f(n) = 1 - \frac{1}{{n + 1}}\).
\(f\)(1)\( \cdot f\)(2)\( \cdot f\)(3)\( \cdot \ldots \cdot f(100)\)
\( = (1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{4}) \cdot \cdot \cdot (1 - \frac{1}{{101}})\)
\( = \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \cdot \cdot \cdot \times \frac{{100}}{{101}}\)
\( = \frac{1}{{101}}\).
故答案为:\(1 - \frac{1}{{n + 1}}\);\(\frac{1}{{101}}\).