“微信扫一扫”进入题库练习及模拟考试
证明: \({\rm{A}}_{n + 1}^m - {\rm{A}}_n^m = m{\rm{A}}_n^{m - 1}\) .
参考答案:\(\because {{A}^{m}_{n+1}}-{A}^{m}_{n}\)
\(=\frac {\left ( {n+1} \right )!}{\left ( {n+1-m} \right )!}-\frac {n!} {\left ( {n-m} \right )!} \)
\(=\frac {n!} {\left ( {n-m} \right )!}\cdot \left ( {\frac {n+1} {n+1-m}-1} \right )\)
\(=\frac {n!} {\left ( {n-m} \right )!}\cdot \frac {m} {\left ( {n+1-m} \right )}\)
\(=m\cdot \frac {n!} {\left ( {n+1-m} \right )!}\)
\(=m{A}^{m-1}_{n},\)
\(\therefore {\rm{A}}_{n + 1}^m - {\rm{A}}_n^m
= m{\rm{A}}_n^{m - 1} \).