“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知函数 \(f\left( x \right) = {x^2}\left( {x - 2} \right)\).


\(f\left ( {x} \right )\)的单调区间;




知识点:第五章 一元函数的导数及其应用


参考答案:\(\because f\left( x \right) = {x^2}\left( {x - 2} \right) = {x^3} - 2{x^2}\) ,所以, \(f'\left( x \right) = 3{x^2} - 4x\).

由 \(f'\left( x \right) = 3{x^2} - 4x > 0\),解得 \(x < 0\) 或 \(x > \frac{4}{3}\);

由 \(f'\left( x \right) = 3{x^2} - 2x < 0\),解得 \(0 < x < \frac{4}{3}\) ,

所以\(f\left ( {x} \right )\)的递增区间为 \(\left( { - \infty ,0} \right)\) 、 \(\left( {\frac{4}{3}, + \infty } \right)\) ,递减区间为 \(\left( {0,\frac{4}{3}} \right)\).

进入考试题库