“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知函数\(f(x) = {x^3} + a{x^2} + bx + c\)在点\(P(1,2)\)处的切线斜率为4,且在\(x = - 1\)处取得极值.



当\(x\in [-2,2]\)时,求函数\(f\left ( {x} \right )\)的最值.



知识点:第五章 一元函数的导数及其应用


参考答案:\(f{(x)_{\min }} = - 1\),\(f{(x)_{\max }} = 11\).

由\((1)\)知:

\({f^\prime }(x) = 3{x^2} + 2x - 1\),

令\(f'(x) = \)\((3x - 1)(x + 1) = 0\),

解得\(x = \frac{1}{3},x = - 1\),

当\(x\in \left [ {-2,-1} \right )\)时,\({f}^{\, '}\left ( {x} \right )>0\),\(f\left ( {x} \right )\)为增函数,

当\(x\in (-1,\frac {1} {3})\)时,\({f}^{\, '}\left ( {x} \right )<0\),\(f\left ( {x} \right )\)为减函数,

当\(x\in \left ( {\frac {1} {3},2} \right ]\)时,\({f}^{\, '}\left ( {x} \right )>0\),\(f\left ( {x} \right )\)为增函数,

由\(f( - 2) = - 1\),\(f( - 1) = 2\),

\(f(\frac{1}{3}) = \frac{{22}}{{27}}\),\(f(2) = 11\),

所以\(f{(x)_{\min }} = - 1\),\(f{(x)_{\max }} = 11\).

进入考试题库