“微信扫一扫”进入题库练习及模拟考试
已知函数
当\(x\in [-2,2]\)时,求函数\(f\left ( {x} \right )\)的最值.
参考答案:\(f{(x)_{\min }} = - 1\),\(f{(x)_{\max }} = 11\).
由\((1)\)知:
\({f^\prime }(x) = 3{x^2} + 2x - 1\),
令\(f'(x) = \)\((3x - 1)(x + 1) = 0\),
解得\(x = \frac{1}{3},x = - 1\),
当\(x\in \left [ {-2,-1} \right )\)时,\({f}^{\, '}\left ( {x} \right )>0\),\(f\left ( {x} \right )\)为增函数,
当\(x\in (-1,\frac {1} {3})\)时,\({f}^{\, '}\left ( {x} \right )<0\),\(f\left ( {x} \right )\)为减函数,
当\(x\in \left ( {\frac {1} {3},2} \right ]\)时,\({f}^{\, '}\left ( {x} \right )>0\),\(f\left ( {x} \right )\)为增函数,
由\(f( - 2) = - 1\),\(f( - 1) = 2\),
\(f(\frac{1}{3}) = \frac{{22}}{{27}}\),\(f(2) = 11\),
所以\(f{(x)_{\min }} = - 1\),\(f{(x)_{\max }} = 11\).