\(\because \Delta y=f(x+\Delta x)-f(x)\)\(={(\Delta x{)}^{2}}+2x\cdot \Delta x-\frac {1} {2}\Delta x\)
\(\therefore \frac {\Delta y} {\Delta x}=2x+\Delta x-\frac {1} {2}\)
\(\therefore {{f}^{\prime }}(x)=\mathop{\lim}\limits_{\Delta x\to 0}\frac {\Delta y} {\Delta x}=2x-\frac {1} {2}\).