当 \(n = k\) 时成立,即 \(f\left( k \right) = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{{{2^k} - 1}}\) ,
则 \(n = k + 1\) 成立时,有 \(f\left( {k + 1} \right) = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{{{2^k} - 1}} + \frac{1}{{{2^k}}} + \cdots + \frac{1}{{{2^k} + {2^k} - 1}}\) ,
所以增加的项数是 \(\left( {{2^k} + {2^k} - 1} \right) - \left( {{2^k} - 1} \right) = {2^k}\) .
故答案为:\({2^k}\) .