高中数学选择性必修 第二册(381题)
用数学归纳法证明 \(\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right) \cdot \cdot \cdot \left( {n + n} \right) = {2^n} \times 1 \times 3 \times 5 \times \cdot \cdot \cdot \times \left( {2n - 1} \right)\left( {n \in {N^ * }} \right)\) 的过程中,当\(n\)从\(k\)到\(k + 1\)时,等式左边应增乘的式子是( )
A.\(2k + 1\)
B.\(\left( {2k + 1} \right)\left( {2k + 2} \right)\)
C.\(\frac{{\left( {2k + 1} \right)\left( {2k + 2} \right)}}{{k + 1}}\)
D.\(\frac{{2k + 2}}{{k + 1}}\)
知识点:第四章 数列
参考答案:C
解析:
当 \(n = k\) 时,等式左边 \( = \left( {k + 1} \right)\left( {k + 2} \right) \cdots \left( {k + k} \right)\) ,
当 \(n = k + 1\) 时,等式左边 \( = \left( {k + 2} \right)\left( {k + 3} \right) \cdots \left( {k + k} \right)\left( {2k + 1} \right)\left( {2k + 2} \right)\) ,
因此,当 \(n\) 从 \(k\) 到 \(k + 1\) 时,等式左边应增乘的式子为\(\frac{{\left( {k + 2} \right)\left( {k + 3} \right) \cdots \left( {k + k} \right)\left( {2k + 1} \right)\left( {2k + 2} \right)}}{{\left( {k + 1} \right)\left( {k + 2} \right) \cdots \left( {k + k} \right)}} = \frac{{\left( {2k + 1} \right)\left( {2k + 2} \right)}}{{k + 1}}\) .
故选:C.