“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知递增等比数列 \( \left\{{a}_{n}\right\}\) 的前 \( n\) 项和为 \( {S}_{n}\) \({a_2} = 2\) \( {S}_{3}=7\) ,数列\(\{ {\log _2}({S_n} + 1)\} \) 的前 \( n\) 项和为 \( {T}_{n}\) ,则 \( {T}_{n}=\) ___.



知识点:第四章 数列


参考答案:\( \frac{n(n+1)}{2}\)


解析:


设等比数列 \( \left\{{a}_{n}\right\}\) 的公比为 \( q\) ,由 \({a_2} = 2\)  \({S_3} = {a_1} + {a_2} + {a_3} = 7\) ,得 \(\frac{2}{q} + 2 + 2q = 7\) ,即\( 2{q}^{2}-5q+2=0\) ,解得 \( q=2\)  \( q=\frac{1}{2}\) (舍去),



 \({a_1} = \frac{{{a_2}}}{q} = \frac{2}{2} = 1\) ,所以 \( {S}_{n}=\frac{1-{2}^{n}}{1-2}={2}^{n}-1\) ;令 \({b_n} = {\log _2}({S_n} + 1)\) ,则 \({b}_{n}=\log_{2} {{2}^{n}}\) \( =n\),所以\({T_n} = \frac{n}{2}(n + 1)\) 


进入考试题库