由题意,等比数列 \( \left\{{a}_{n}\right\}\) 的前 \( n\) 项和为 \( {S}_{n}\) ,满足 \( {a}_{1}+{a}_{2}+{a}_{3}=3,{a}_{4}+{a}_{5}+{a}_{6}=6\) ,
则 \( \frac{{a}_{4}+{a}_{5}+{a}_{6}}{{a}_{1}+{a}_{2}+{a}_{3}}=\frac{6}{3}=2\) ,所以 \( {a}_{7}+{a}_{8}+{a}_{9}=12,{a}_{10}+{a}_{11}+{a}_{12}=24\) ,
则 \( {S}_{12}={a}_{1}+{a}_{2}+{a}_{3}+\cdots +{a}_{10}+{a}_{11}+{a}_{12}=45\) ,故选C.