由 \( {S}_{n}+2=2{a}_{n}\left(n\in {N}^{*}\right)\) ,
当 \( n=1\) 时,可得 \({a_1} = 2\) ,
当 \( n\ge 2\) 时, \( {S}_{n-1}+2=2{a}_{n-1}\) ,
两式作差可得: \( {a}_{n}=2{a}_{n}-2{a}_{n-1}\) ,
即 \( {a}_{n}=2{a}_{n-1}\left(n\ge 2\right)\) ,
\( \therefore \)数列 \( \left\{{a}_{n}\right\}\) 是以 \( 2\) 为首项, \( 2\) 为公比的等比数列,
则 \({a_n} = 2 \cdot {2^{n - 1}} = {2^n}\) ,
\( \therefore \frac{{S}_{4}}{{a}_{2}}=\frac{\frac{2\left(1-{2}^{4}\right)}{1-2}}{{2}^{2}}=\frac{15}{2}\)