由 \( {a}_{n+1}^{2}={a}_{n}\cdot {a}_{n+2}\) ,( \( n\in {N}^{*}\) ),知数列 \( \left\{{a}_{n}\right\}\) 是等比数列,设公比为 \( q\) ,则 \({q^3} = \frac{{{a_5}}}{{{a_2}}} = \frac{1}{8}\) ,
即 \( q=\frac{1}{2}\) ,所以 \( {a}_{1}=\frac{{a}_{2}}{q}=32\) ,故 \({a_1} + {a_2} + \cdots + {a_7} = \frac{{32(1 - \frac{1}{{{2^7}}})}}{{1 - \frac{1}{2}}} = \) \( \frac{127}{2}\) .