“微信扫一扫”进入题库练习及模拟考试
设
求
参考答案:由(1)知, \({a_n} + 1 = {2^n}\) , ∴ \({a_n} = {2^n} - 1\) ,∴ \({S_n} = \frac{{2 - {2^{n + 1}}}}{{1 - 2}} - n = {2^{n + 1}} - n - 2\) ,∴ \(n + {S_n} - 2{a_n} = n + {2^{n + 1}} - n - 2 - 2\left( {{2^n} - 1} \right) = 0\) , ∴ \(n + {S_n} = 2{a_n}\) ,即 \(n\) , \({a_n}\) , \({S_n}\) 成等差数列.