“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


在数列 \(\left\{ {{a_n}} \right\}\) 中, \({a_1} = 1\) \({a_2} = 2\) ,且 \({a_{n + 2}} = 3{a_{n + 1}} + 4{a_n}\) .

求数列 \(\left\{ {{a_n}} \right\}\) 的通项公式.



知识点:第四章 数列


参考答案:由(1)知: \({a_{n + 1}} + {a_n} = \left( {{a_2} + {a_1}} \right) \times {4^{n - 1}} = 3 \cdot {4^{n - 1}}\) ,又 \({a_{n + 2}} + {a_{n + 1}} = 3 \cdot {4^n}\) ,则 \({a_{n + 2}} - {a_n} = 9 \cdot {4^{n - 1}}\) ,当 n 为奇数时,\({a_n} = {a_1} + \left( {{a_3} - {a_1}} \right) + \cdots + \left( {{a_n} - {a_{n - 2}}} \right)\) \( = 1 + 9 \cdot \left( {1 + {4^2} + \cdots + {4^{n - 3}}} \right) = 1 + 9 \cdot \frac{{1 - {4^{n - 3}} \cdot {4^2}}}{{1 - {4^2}}} = \frac{3}{5} \cdot {4^{n - 1}} + \frac{2}{5}\) ,当 n 为偶数时, \({a_n} = 3 \cdot {4^{n - 1}} - {a_{n + 1}} = \frac{3}{5} \cdot {4^{n - 1}} - \frac{2}{5}\) .综上, \({a_n} = \frac{3}{5} \cdot {4^{n - 1}} + {\left( { - 1} \right)^{n + 1}} \cdot \frac{2}{5}\).

进入考试题库