“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


已知数列 \(\left\{ {{a_n}} \right\}\) 的前 \(n\) 项和为 \({S_n}\) \(2{S_n} = {n^2} + {a_2}n\)

求数列 \(\left\{ {{2^{{a_n}}}} \right\}\) 的前 \(n\) 项和 \({T_n}\) 



知识点:第四章 数列


参考答案:由(1)得, \(2{S_n} = {n^2} + 3n\) ③,
当 \(n \geqslant 2\) 时 , \(2{S_{n - 1}} = {\left( {n - 1} \right)^2} + 3\left( {n - 1} \right)\) ④,③-④,
得 \(2{a_n} = 2n + 2\) ,
∴ \({a_n} = n + 1\left( {n \geqslant 2} \right)\) .
当 \(n = 1\) 时, \({a_1} = 2\) 满足上式,
故 \({a_n} = n + 1\) .故 \(\left\{ {{2^{{a_n}}}} \right\}\) 是首项为4,公比为2的等比数列,
所以 \({T_n} = \frac{{4 - {2^{n + 1}} \cdot 2}}{{1 - 2}} = {2^{n + 2}} - 4\) .

进入考试题库