“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)



由实数构成的等比数列 \(\left\{ {{a_n}} \right\}\) 的前\(n\)项和为 \({S_n}\)  \({a_1} = 2\) ,且 \({a_2} - 4,{a_3},{a_4}\) 成等差数列,则 \({S_6} = \)        



A.62

B.124

C.126

D.154


知识点:第四章 数列


参考答案:C


解析:

由题意知, \(2{a_3} = {a_2} - 4 + {a_4}\) 

 \(\left\{ {{a_n}} \right\}\) 的公比为 \(q\) ,则 \(\left\{ {\begin{array}{*{20}{c}}
{2{a_1}{q^2} = {a_1}q - 4 + {a_1}{q^3}} \\\
{{a_1} = 2}
\end{array}} \right.,\)

解得 \(q = 2\) ,则 \(\frac{{2\left( {1 - {2^6}} \right)}}{{1 - 2}} = 126\) .

进入考试题库